• Title/Summary/Keyword: FPGA Hardware

Search Result 801, Processing Time 0.021 seconds

Design and Implementation of a Reconfigurable Communication Terminal Platform (재구성 가능한 통신 단말 플랫폼의 설계 및 구현)

  • Lee, Kyoung-Hak;Ko, Hyung-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.66-73
    • /
    • 2007
  • SDR technology is a fundamental wireless access technology that combines and accommodates multiple wireless communication standards in one transceiver system through just modifying software using modular communication platforms without any hardware modifications for RF and IF signal processing on the basis of high performance DSP devices. Various communication systems that are designed under diverse and complex network environments require the communication platforms on the basis of SDR supporting reorganization to guarantee simple and fast communication interfaces among the respective wireless networks. This paper introduces a main idea on the implementation of platform on the basis of SDR and a communication platform is designed for experiments that is composed of a DSP board with TMS320C6713 CPU, a FPGA board processing IF signals, and a module with RF transceiver processing wireless LAN frequency bandwidth. Various modulation schemes(BPSK, QPSK, and 16QAM) used in communication systems are applied and tested on the designed platform and the test results shows that it is possible to design a reconfigurable communication terminal platform.

  • PDF

A Cryptoprocessor for AES-128/192/256 Rijndael Block Cipher Algorithm (AES-128/192/256 Rijndael 블록암호 알고리듬용 암호 프로세서)

  • 안하기;박광호;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.427-433
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES(Advanced Encryption Standard) block cipher algorithm "Rijndael". To achieve high throughput rate, a sub-pipeline stage is inserted into the round transformation block, resulting that the second half of current round function and the first half of next round function are being simultaneously operated. For area-efficient and low-power implementation, the round block is designed to share the hardware resources in encryption and decryption. An efficient scheme for on-the-fly key scheduling, which supports the three master-key lengths of 128-b/192-b/256-b, is devised to generate round keys in the first sub-pipeline stage of each round processing. The cryptoprocessor designed in Verilog-HDL was verified using Xilinx FPGA board and test system. The core synthesized using 0.35-${\mu}{\textrm}{m}$ CMOS cell library consists of about 25,000 gates. Simulation results show that it has a throughput of about 520-Mbits/sec with 220-MHz clock frequency at 2.5-V supply.-V supply.

Design and Implementation of a Host Interface for a Regular Expression Processor (정규표현식 프로세서를 위한 호스트 인터페이스 설계 및 구현)

  • Kim, JongHyun;Yun, SangKyun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Many hardware-based regular expression matching architectures have been proposed for high-performance matching. In particular, regular expression processors, which perform pattern matching by treating the regular expressions as the instruction sequence like general purpose processors, have been proposed. After instruction sequence and data are provided in the instruction memory and data memory, respectively, a regular expression processor can perform pattern matching. To use a regular expression processor as a coprocessor, we need the host interface to transfer the instruction and data into the memory of a regular expression processor. In this paper, we design and implement the host interface between a host and a regular expression processor in the DE1-SoC board and the application program interface. We verify the operations of the host interface and a regular expression processor by executing the application programs which perform pattern matching using the application program interface.

Design and Development of PCI-based 1553B Communication Software for Next Generation LEO On-Board Computer (차세대 저궤도 위성의 PCI 기반의 1553B 통신 소프트웨어 설계)

  • Choi, Jong-Wook;Jeong, Jae-Yeop;Yoo, Bum-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.65-71
    • /
    • 2016
  • Currently developing the OBC of the next-generation LEO satellite by Korea Aerospace Research Institute adopts the LEON2-FT/AT697F processor to achieve high performance. And various communication devices such as SpaceWire, MIL-STD-1553B, DMAUART and CAN Master are integrated to the separated standard communication FPGAs within the OBC, where they can be controlled by the processor and flight software (FSW) through PCI interface. The Actel 1553BRM IP core is used for the 1553B in the next-generation LEO OBC and the B1553BRM wrapper from Aeroflex Gaisler is used for connecting it to the AMBA bus in FPGA. This paper presents the design and development of PCI-based 1553B communication software, and describes the handling mechanism of 1553B operation in FSW task level. Also it shows the test results on real-hardware and simulator.

Telemetry System Encryption Technique using ARIA Encryption Algorithm (ARIA 암호 알고리즘을 이용한 원격측정 시스템 암호화 기법)

  • Choi, Seok-Hun;Lee, Nam-Sik;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.134-141
    • /
    • 2020
  • Telemetry system is a communication system that measures and transmits various signals in the aircraft to the ground for collecting and monitoring flight data during the development of unmanned air vehicle and satellite launch vehicles. With the recent development of wireless communication technology, it is becoming important to apply encryption of telemetry system to prepare with security threats that may occur during flight data transmission. In this paper, we suggested and implemented the application method of ARIA-256, Korean standard encryption algorithm, to apply encryption to telemetry system. In consideration of the block error propagation and the telemetry frame characteristics, frame is encrypted using the CTR mode and can apply the Reed-solomon codes recommended by CCSDS. ARIA algorithm and cipher frame are implemented in FPGA, and simulation and hardware verification system confirmed continuous frames encryption.

A Study on the Implementation of Digital Radio Frequency Memory (디지털 고주파 메모리 구현에 관한 연구)

  • You, Byung-Sek;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2164-2170
    • /
    • 2010
  • Digital Radio Frequency Memory, ( as DRFM ), is a device with the ability to restore output to the input RF signal in the required time after storing the incoming RF signals. Therefore DRFM is widely used in Jammer, EW Simulator, Target Echo Generator, and so on. This paper proposes its hardware implementation composed with the high frequency part and the digital processing part consisting of RF input/output module and local oscillator module. It is also proposed the replicated signal generation method which is consisted of the Analog-Digital conversion in the form of pulsed RF signal quantization, and FPGA to save and produce the playback signal, and RF signals to produce a Digital-Analog Conversion in the digital processing unit. This proposed scheme applied to test board and confirmed the validity of the proposed scheme through the test results obtained by the simulated input signals.

8.3 Gbps pipelined LEA Crypto-Processor Supporting ECB/CTR Modes of operation (ECB/CTR 운영모드를 지원하는 8.3 Gbps 파이프라인 LEA 암호/복호 프로세서)

  • Sung, Mi-Ji;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2333-2340
    • /
    • 2016
  • A LEA (Lightweight Encryption Algorithm) crypto-processor was designed, which supports three master key lengths of 128/ 192/256-bit, ECB and CTR modes of operation. To achieve high throughput rate, the round transformation block was designed with 128 bits datapath and a pipelined structure of 16 stages. Encryption/decryption is carried out through 12/14/16 pipelined stages according to the master key length, and each pipelined stage performs round transformation twice. The key scheduler block was optimized to share hardware resources that are required for encryption, decryption, and three master key lengths. The round keys generated by key scheduler are stored in 32 round key registers, and are repeatedly used in round transformation until master key is updated. The pipelined LEA processor was verified by FPGA implementation, and the estimated performance is about 8.3 Gbps at the maximum clock frequency of 130 MHz.

SoC Design of Speaker Connection System by Efficient Cosimulation (효율적인 통합시뮬레이션에 의한 스피커 연결 시스템의 SoC 설계)

  • Song, Moon-Vin;Song, The-Hoon;Oh, Chae-Gon;Chung, Yun-Mo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.68-73
    • /
    • 2006
  • This, paper proposes a cosimulation methodology that results in an efficient SoC design as well as fast verification by integrating HDL, SystemC, and algorithm-level abstraction using the design tools Active-HDL and Matlab's Simulink. To demonstrate the proposed design methodology, we implemented the design technique on a serial connection multi-channel speaker system. We have demonstrated the proposed cosimulation method utilizing an ARM processor based SoC Master board with the AMBA bus interface and a Xilinx Vertex4 FPGA. The proposed method has the advantage of simultaneous simulation verification of both software and hardware parts in high levels of abstraction mixed with some performance critical parts in more concrete RTL codes. This allows relatively fast and easy design of a speaker connection system which typically requires significant amount of data processing for verification.

Low-power Structure for H.264 Deblocking Filter (H.264용 디블로킹 필터의 저전력 구조)

  • Jang Young-Beom;Oh Se-Man;Park Jin-Su;Han Kyu-Hoon;Kim Soo-Hong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.92-99
    • /
    • 2006
  • In this paper, a low-power deblocking filter structure for H.264 video coding algorithm is proposed. By sharing addition hardware for common filter coefficients, we have designed an efficient deblocking filter structure. Proposed deblocking filter utilizes MUX and DEMUX circuits for input data sharing and shows 44.2% reduction for add operation. In the HDL coding simulation and FPGA implementation, we achieved 19.5% and 19.4% gate count reduction, respectively, comparison with the conventional deblocking filter structure. Due to its efficient processing scheme, the proposed structure can be widely used in H.264 encoding and decoding SoC.

A design of LDPC decoder supporting multiple block lengths and code rates of IEEE 802.11n (다중 블록길이와 부호율을 지원하는 IEEE 802.11n용 LDPC 복호기 설계)

  • Kim, Eun-Suk;Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.132-135
    • /
    • 2011
  • This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A novel memory reduction technique devised using the min-sum decoding algorithm reduces the size of check-node memory by 47% as compared to conventional method. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a $0.18-{\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.

  • PDF