• Title/Summary/Keyword: FPGA 구현

Search Result 1,193, Processing Time 0.02 seconds

Randomness based Static Wear-Leveling for Enhancing Reliability in Large-scale Flash-based Storage (대용량 플래시 저장장치에서 신뢰성 향상을 위한 무작위 기반 정적 마모 평준화 기법)

  • Choi, Kilmo;Kim, Sewoog;Choi, Jongmoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • As flash-based storage systems have been actively employed in large-scale servers and data centers, reliability has become an indispensable element. One promising technique for enhancing reliability is static wear-leveling, which distributes erase operations evenly among blocks so that the lifespan of storage systems can be prolonged. However, increasing the capacity makes the processing overhead of this technique non-trivial, mainly due to searching for blocks whose erase count would be minimum (or maximum) among all blocks. To reduce this overhead, we introduce a new randomized block selection method in static wear-leveling. Specifically, without exhaustive search, it chooses n blocks randomly and selects the maximal/minimal erased blocks among the chosen set. Our experimental results revealed that, when n is 2, the wear-leveling effects can be obtained, while for n beyond 4, the effect is close to that obtained from traditional static wear-leveling. For quantitative evaluation of the processing overhead, the scheme was actually implemented on an FPGA board, and overhead reduction of more than 3 times was observed. This implies that the proposed scheme performs as effectively as the traditional static wear-leveling while reducing overhead.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.

Family Structure and Succession of the Late Chosun Seen through Male Adoption (양자제도를 통해 본 조선후기 가족구조와 가계계승: 의성김씨 호구단자 분석을 중심으로)

  • Park, Soo-Mi
    • Korea journal of population studies
    • /
    • v.30 no.2
    • /
    • pp.71-95
    • /
    • 2007
  • This paper attempts to identify the principle of family succession and family patterns of yangban in the late Chosun period through an analysis of male adaptation cases found in family registration records. The primary source of analysis is the family registration documents of Uiseong Kim's from the late 17th century to the early 20th century. As a result, it is found that there is a substantial change in the patterns of family from the early and mid Chosun period to the late Chosun period. The change is the strengthening of the principle of patriarchy succession through male adoption. Looking at the data as a whole, the average number of household members is increased and the membership of kinship also expanded. In contrast to the family patterns of the early Chosun period, not only the patterns of Uiseong Kim's family are predominately immediate family or collateral family but also the majority is extended family in the 18th and 19th centuries. The male adoption cases recorded in Uiseong Kim's family registration documents take up 33.8% of the male adoption cases in the entire family registration documents. This goes to show that the strengthening of the principle of primogeniture succession at a time when child mortality rate is very high resulted in the increase of male adoption. In conclusion, the late Chosun society was a society where the seat of primogeniture was much more important than immediate hereditary members in the family succession.