• Title/Summary/Keyword: FPGA

Search Result 2,090, Processing Time 0.031 seconds

Education Equipment for FPGA Design of Sensor-based IOT System (센서 기반의 IOT 시스템의 FPGA 설계 교육용 장비)

  • Cho, Byung-woo;Kim, Nam-young;Yu, Yun-seop
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • Education equipment for field programmable gate array (FPGA) design of sensor-based IOT (Internet Of Thing) system is introduced. Because sensors have different interfaces, several types of interface controller on FPGA need. Using this equipment, several types of interface controller, which can control ADC (analog-to-digital converter) for analog sensor outputs and $I^2C$ (Inter-Integrated Circuit), SPI (Serial Peripheral Interface Bus), and GPIO (General-Purpose Input/Output) for digital sensor outputs, can be designed on FPGA. Image processing hardware using image sensors and display controller for real and image-processed images or videos can be design on FPGA chip. This equipment can design a SOC (System On Chip) consisting of a hard process core on Linux OS and a FPGA block for IOT system which can communicate with wire and wireless networks. Using the education equipment, an example of hardware design using image sensor and accelerometer is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs.

A Quantitative Reliability Analysis of FPGA-based Controller for applying to Nuclear Instrumentation and Control System (원전적용을 위한 FPGA 기반 제어기의 정량적 신뢰도 평가)

  • Lee, Joon-Ku;Jeong, Kwang-Il;Park, Geun-Ok;Sohn, Kwang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1117-1123
    • /
    • 2014
  • Nuclear industries have faced unfavorable circumstances such as an obsolescence of the instrumentation and control system, and therefore nuclear society is striving to resolve this trouble fundamentally. FPGAs are currently highlighted as an alternative means for obsolete control systems. Because of the obsolescence-unaffected characteristics, FPGA should be highly reliable in order to be a replacement for PLC (Programmable Logic Controller). Therefore, it is necessary to establish a software development aspect strategy that enhances the reliability of an FPGA-based controller. The reliability analysis including the MTBF (Mean Time Between Failures) is carried out based on the MIL-HDBK-217F. MTBFs are compared with the FPGA-based controller COMMON-Q PLC. As an analysis result, it shows that the reliability of the FPGA-based controller is better than or equal to that of PLC.

Towards Characterization of Modern FPGAs: A Case Study with Adders and MIPS CPU (가산기와 MIPS CPU 사례를 이용한 현대 FPGA의 특성연구)

  • Lee, Boseon;Suh, Taewon
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 2013
  • The FPGA-based emulation is an essential step in ASIC design for validation. For emulation with maximal frequency, it is crucial to understand the FPGA characteristics. This paper attempts to analyze the performance characteristics of the modern FPGAs from renowned vendors, Xilinx and Altera, with a case study utilizing various adders and MIPS CPU. Unlike the common wisdom, ripple-carry adder (RCA) does not utilize the inherent carry-chain inside FPGAs when structurally designed based on 1-bit adders. Thus, the RCA shows the inferior performance to the other types of adders in FPGAs. Our study also reveals that FPGAs from Xilinx exhibit different characteristics from the ones from Altera. That is, the prefix adder, which is optimized for speed in ASIC design, shows the poor performance on Xilinx devices, whereas it provides a comparable speed to the IP core on Altera devices. It suggests that error-prone manual change of the original design can be avoided on Altera devices if area is permitted. Experiments with MIPS CPU confirm the arguments.

  • PDF

Implementation of a Logic Extraction Algorithm from a Bitstream Data for a Programmed FPGA (프로그램된 FPGA의 비트스트림 데이터로부터 로직추출 알고리즘 구현)

  • Jeong, Min-Young;Lee, Jae-Heum;Jang, Young-Jo;Jung, Eun-Gu;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • This paper presents a method to resynthesize logic of a programmed FPGA from a bitstream file that is a downloaded file for Xilinx FPGA (Field Programmable Gate Array). It focuses on reconfiguring the LUT (Look Up Table) logic. The bitstream data is compared and analyzed considering various situations and various input variables such as composing other logics using the same netlist or synthesizing the same logic at various positions to find a structure of the bitstream. Based on the analyzed bitstream, we construct a truth table of the LUT by implementing various logic for one LUT. The proposed algorithm extracts the logic of the LUT based on the truth table of the generated LUT and the bitstream. The algorithm determines the input and output pins used to implement the logic in the LUT. As a result, we extract a gate level logic from a bitstream file for the targeted Xillinx FPGA.

Design and Qualification of FPGA-based Controller applying HPD Development Life-Cycle for Nuclear Instrumentation and Control System (HPD 개발수명주기를 적용한 원전 FPGA 기반 제어기의 설계와 검증)

  • Lee, Joon-Ku;Jeong, Kwang-Il;Park, Geun-Ok;Sohn, Kwang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.681-687
    • /
    • 2014
  • Nuclear industries have faced unfavorable circumstances such as an obsolescence of the instrumentation and control system, and therefore nuclear society is striving to resolve this issue fundamentally. IEC and IAEA judge that FPGA technology is a good replacement for Programmable Logic Controller (PLC) of Nuclear Instrumentation and Control System. FPGAs are currently highlighted as an alternative means for obsolete control systems. Because the main function inside an FPGA is initially developed as software, good software quality can impact the reliability of an FPGA-based controller. Therefore, it is necessary to establish a software development aspect strategy that enhances the reliability of an FPGA-based controller. In terms of software development, HDL-Programmed Device (HPD) Development Life Cycle is applied into FPGA-based Controller. The burn-in test and environmental(temperature) test should be performed in order to apply into nuclear instrumentation and control system. Therefore it is ensured that the developed FPGA-based controller are normally operated for 352 hours and 92 hours in test chamber of Korea Institute of Machinery and Materials (KIMM).

Real-time FCWS implementation using CPU-FPGA architecture (CPU-FPGA 구조를 이용한 실시간 FCWS 구현)

  • Han, Sungwoo;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • Advanced Driver Assistance Systems(ADAS), such as Front Collision Warning System (FCWS) are currently being developed. FCWS require high processing speed because it must operate in real time while driving. In addition, a low-power system is required to operate in an automobile embedded system. In this paper, FCWS is implemented in CPU-FPGA architecture in embedded system to enable real-time processing. The lane detection enabled the use of the Inverse Transform Perspective (IPM) and sliding window methods to operate at fast speed. To detect the vehicle, a Convolutional Neural Network (CNN) with high recognition rate and accelerated by parallel processing in FPGA is used. The proposed architecture was verified using Intel FPGA Cyclone V SoC(System on Chip) with ARM-Core A9 which operates in low power and on-board FPGA. The performance of FCWS in HD resolution is 44FPS, which is real time, and energy efficiency is about 3.33 times higher than that of high performance PC enviroment.

Hardware Implementation of Motor Controller Based on Zynq EPP(Extensible Processing Platform) (Zynq EPP를 이용한 모터 제어기의 하드웨어 구현)

  • Moon, Yong-Seon;Lim, Seung-Woo;Lee, Young-Pil;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1707-1712
    • /
    • 2013
  • In this paper, we implement a hardware for motor control based on FPGA + embedded processor using Zynq EPP which is All Programmable SoC in order to improve a structural problem of motion control based on such as DSP, MCU and FPGA previously. The implemented motor controller that is fused controller with advantage of FPGA and embedded processor. The signal processing part of high velocity motor control is performed by motor controller based on FPGA. A motion profile and kinematic calculation that are required algorithm process such as operation of a complicate decimal point has processed in an embedded processor based on dual core. As a result of a hardware implementation, it has an advantage that has can be realized an effect of distribution process in one chip. It has also an advantage that is able to organize as a multi-axis motor controller through adding the IP core of motor control implemented on FPGA.

Adaptive Processing Algorithm Allocation on OpenCL-based FPGA-GPU Hybrid Layer for Energy-Efficient Reconfigurable Acceleration of Abnormal ECG Diagnosis (비정상 ECG 진단의 에너지 효율적인 재구성 가능한 가속을 위한 OpenCL 기반 FPGA-GPU 혼합 계층 적응 처리 알고리즘 할당)

  • Lee, Dongkyu;Lee, Seungmin;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1279-1286
    • /
    • 2021
  • The electrocardiogram (ECG) signal is a good indicator for early diagnosis of heart abnormalities. The ECG signal has a different reference normal signal for each person. And it requires lots of data to diagnosis. In this paper, we propose an adaptive OpenCL-based FPGA-GPU hybrid-layer platform to efficiently accelerate ECG signal diagnosis. As a result of diagnosing 19870 number of ECG signals of MIT-BIH arrhythmia database on the platform, the FPGA accelerator takes 1.15s, that the execution time was reduced by 89.94% and the power consumption was reduced by 84.0% compared to the software execution. The GPU accelerator takes 1.87s, that the execution time was reduced by 83.56% and the power consumption was reduced by 62.3% compared to the software execution. Although the proposed FPGA-GPU hybrid platform has a slower diagnostic speed than the FPGA accelerator, it can operate a flexible algorithm according to the situation by using the GPU.

Implementation of an Intelligent Controller with a DSP and an FPGA for Nonlinear Systems

  • Kim, Sung-Su;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.575-580
    • /
    • 2003
  • In this paper, we develop a control hardware such as an FPGA based general purpose controller with a DSP board to solve nonlinear control problems. PID control algorithms are implemented in an FPGA and neural network control algorithms are implemented in a DSP board. PID controllers implemented on an FPGA was designed by using VHDL to achieve high performance and flexibility. By using high capacity of an FPGA, the additional hardware such as an encoder counter and a PWM generator, can be implemented in a single FPGA device. As a result, the noise and power dissipation problems can be minimized and the cost effectiveness can be achieved. In order to show the performance of the developed controller, it was tested for controlling nonlinear systems such as an inverted pendulum.

  • PDF