• Title/Summary/Keyword: FPA

Search Result 100, Processing Time 0.025 seconds

Design optimization of a hollow shaft through MATLAB and simulation using ANSYS

  • Mercy, J. Rejula;Stephen, S. Elizabeth Amudhini;Edna, K. Rebecca Jebaseeli
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Non-Traditional Optimization methods are successfully used in solving many engineering problems. Shaft is one of important element of machines and it is used to transmit power from a machine which produces power to a machine which absorbs power. In this paper, ten non-traditional optimization methods that are ALO, GWO, DA, FPA, FA, WOA, CSO, PSO, BA and GSA are used to find minimum weight of hollow shaft to get global optimal solution. The problem has two design variables and two inequality constraints. The comparative results show that the Particle Swarm Optimization outperforms other methods and the results are validated using ANSYS.

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

Characteristics of Surface Micromachined Pyroelectric Infrared Ray Focal Plane Array

  • Ryu, Sang-Ouk;Cho, Seong-Mok;Choi, Kyu-Jeong;Yoon, Sung-Min;Lee, Nam-Yeal;Yu, Byoung-Gon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • We have developed surface micromachined Infrared ray (IR) focal plane array (FPA), in which single $SiO_{2}$ layer works as an IR absorbing plate and $Pb(Zr_{0.3}Ti_{0.7})O_{2}$ thin film served as a thermally sensitive material. There are some advantages of applying $SiO_{2}$ layer as an IR absorbing layer. First of all, the $SiO_{2}$ has good IR absorbance within $8{\sim}12{\mu}m$ spectrum range. Measured value showed about 60% absorbance of incident IR spectrum in the range. $SiO_{2}$ layer has another important merit when applied to the top of Pt/PZT/Pt stack because it works also as a supporting membrane. Consequently, the IR absorbing layer forms one body with membrane structure, which simplifies the whole MEMS process and gives robustness Ito the structure.

Implementation of Segment_LCD display based on SoC design

  • Ling, Ma;Kim, Kab-Il;Son, Young-I.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.59-62
    • /
    • 2003
  • The purpose of this paper is to present how to implement Segment_LCD display using SoC design. The SoC design is achieved by using an ARM_based Excalibur device. The Excalibur device offers an outstanding embedded development platform with ARM922T and FPA. The design in the Excailbur device uses the embedded AR띤 Processor core and the AMBA high-performance bus (AHH) to write to a memory-mapped slave peripheral in the FPGA portion of the device. Here, Segment_LCD is one kind of memory-mapped slave peripherals. In order to Implement the Segment_LCD display based on SoC design, four steps are fellowed. At first, IP modules are made by using Verilog HDL. Secondly, the ARM processor of the Excalibur is programmed using C in ADS (ARM Developer Suite). And in the third step, the whole system is simulated and verified. At last, modules are downloaded to SoCMaster kit. Both Quartus II software and ModelSim5.5e software are the key software tools during the design.

  • PDF

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

The Design of MSC(Multi-Spectral Camera) Calibration Operation

  • Yong Sang-Soon;Kang Geum-Sil;Jang Young-Jun;Kim Jong-Ah;Kang Song-Doug;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.601-603
    • /
    • 2004
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT -2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of $20\%$ over the mission lifetime of 3 years with the functions of programmable gain! offset and onboard image data compression/storage. MSC instrument has one(1) channel for panchromatic Imaging and four(4) channel for multi-spectral Imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the configuration, the interface of MSC hardware and the MSC operation concept are described. And the method of the MSC calibration are described and the design of MSC calibration operation to measure the change of MSC after Launch & Early Operation(LEOP) and normal mission operations are discussed and analyzed.

  • PDF

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

Analysis and test of athermalizaion for 20:1 zoom thermal imaging system (20:1 줌 열영상 장비 비열화 분석 및 시험)

  • 김현숙;최세철;최세철;이국환;박용찬;김현규
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.281-288
    • /
    • 2001
  • In this study we carried out athermalization analysis and tests to meet the required optical performance for thennal imaging systems even if the systems were operating over a wide temperature range. By using optical design programs such as Code- V and SIGMA2100, the simulation for athermalization was done with FPA thermal imaging system. In the athermalization test putting the thermal imaging system and collimator into a temperature chamber, the images depending on the temperature were recorded on video tape. In particular, the zoom thermal imaging system with two dimensional array detector was tested to check the result of the athermalization simulation. As a result, it was proved to meet the required optical performance for the thermal imaging system within $-32-+50^{\circ}C$ temperature range. range.

  • PDF

Effect of Supplements $Mn^{2+}$, $Cu^{2+}$, and Aromatic Compounds and Penicillium decumbens on Lignocellulosic Enzyme Activity and Productivity of Catathelasma ventricosum

  • Liu, Yuntao;Sun, Jun;Luo, Zeyu;Rao, Shengqi;Su, Yujie;Yang, Yanjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.565-571
    • /
    • 2013
  • This is the first report on using Catathelasma ventricosum for production of fruiting body and lignocellulosic enzymes. To improve the laccase activity and productivity of mushroom, the substrate was added with different supplements (eight aromatic compounds, $Mn^{2+}$, and $Cu^{2+}$). Based on the results, all these supplements can improve the laccase activity and productivity of C. ventricosum, and it seems that there is a critical value of laccase activity that affects the productivity of C. ventricosum. In addition, when Penicillium decumbens was inoculated into the substrate that had been cultivated with C. ventricosum for 20 days, the highest values of laccase activity, FPA activity, and productivity of C. ventricosum were obtained. Moreover, the laccase activity showed a positive correlation with the productivity of C. ventricosum. Finally, the effect of $Mn^{2+}$, $Cu^{2+}$, and P. decumbens on laccase activity was investigated by response surface methodology (RSM).