• Title/Summary/Keyword: FP-LD Injection locking

Search Result 8, Processing Time 0.019 seconds

Modeling of Active Layer and Injection-locking Characteristics in Polarized and Unpolarized Fabry-Perot Laser Diodes (편광 또는 무편광 패브리-페롯 레이저 다이오드의 활성층 및 주입 잠금 동작 특성 모델링)

  • Chung, Youngchul;Yi, Jong Chang;Cho, Ho Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.42-51
    • /
    • 2012
  • In this paper, injection-locking characteristics versus active layer structures in Fabry-Perot laser diodes (FP-LD) are compared. TE and TM gain spectra and peak gains versus carrier density in polarized and unpolarized multiple quantum well structures and in an unpolarized bulk structure are calculated. The calculated gain parameters are applied to a time-domain large-signal model to simulate the injection-locking characteristics. The results show that RIN in unpolarized FD-LDs is about 3 dB lower than that in a polarized FP-LD and that the eye characteristics of the unpolarized FP-LD are much better than those of the polarized FP-LD.

All-optical Flip-flop based on Optical Beating and Bistability in an Injection-locked Fabry-Perot Laser Diode

  • Kim, Junsu;Lee, Hyuek Jae;Park, Chang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.698-703
    • /
    • 2016
  • We report a new all-optical flip-flop (AOFF) with a quite simple structure, using optical beating in an injection-locked Fabry-Perot laser diode (FP-LD) with optical bistability. While conventional AOFF methods using an injection-locked FP-LD require additional devices such as secondary FP-LDs or polarization controllers for reset operation, the proposed method can be implemented using only a single commercially available FP-LD with set and reset signals. The optical beating induces intensity fluctuations inside the FP-LD, and releases the locking state to the reset state. Even though we demonstrated the AOFF at 100 Mbit/s, we expect that its operation rate could extend to 10 Gbit/s, according to the limit of the FP-LD's frequency response.

1Gbps x 16 channel Wavelength Division Multiplexing-Passive Optical Network Field Trial Test (1Gbps x 16채널 WDM-PON 필드 테스트)

  • Kim, Geun-Young;Park, Hyung-Jin;Kim, Jin-Hee;Jeong, Ki-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.704-711
    • /
    • 2009
  • In this paper, we report the results of the field trial test of 1GbpsX16channels Injection locking FP-LD based WDM-PON system which could guarantee 40Mbps minimum bandwidth per subscriber, We have confirmed the system reliability, also verified that the system could reliably deliver the service such as internet, VoD through the systems during the field trial test.

A New All-optical Flip-flop Based on Absorption Nulls of an Injection-locked FP-LD

  • Lee, Hyuek Jae
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • A new all-optical flip-flop (AOFF) method based on the absorption nulls of an injection-locked Fabry-Perot laser diode (FP-LD) in transverse magnetic (TM) mode is proposed and experimentally demonstrated. For the set and reset operations of the AOFF, injection locking and the destructive minus of beating in transverse electric (TE) mode are used. The absorption nulls on the TM mode are modulated according to the operations, and then non-inverted (Q) and inverted (${\bar{Q}}$) outputs can be obtained simultaneously. Thanks to the use of several absorption nulls, the proposed AOFF can achieve multiple outputs with extinction ratios of more than 15 dB. Even though the experiment is demonstrated at 100 Mbit/s, the results of previous experiments using the injection of a CW holding beam imply that the operation speed can increase to 10 Gbit/s.

An Optical Pulse-Width Modulation Generator Using a Single-Mode Fabry-Pérot Laser Diode

  • Tran, Quoc-Hoai;Nakarmi, Bikash;Won, Yong Hyub
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.255-259
    • /
    • 2015
  • We have proposed and experimentally verified a pulse-width modulation (PWM) generator which directly generated a PWM signal in the optical domain. Output waveforms were clear at the repetition rate of 16 MHz; the duty cycle (DC) was from 14.7% to 72.1%; and the DC-control resolution was about 4.399%/dB. The PWM generator' operation principle is based on the injection-locking property of a single-mode Fabry-$P{\acute{e}}rot$ laser diode (SMFP-LD). The SMFP-LD, which has a self-locked mode wavelength at ${\lambda}_{PWM}$, was used to detect the power of the injection-locking signal (optical analog input). If the analog input power is high, the SMFP-LD is locked to the wavelength of the input signal ${\lambda}_a$ and there is no output after an optical bandpass filter (OBF). If the analog input power is low, the SMFP-LD is unlocked and there is output signal at ${\lambda}_{PWM}$ after the OBF. Thus, the SMFP-LD plus the OBF provide digital output for an analog input. The DC of the output PWM signal can be controlled by tuning the power of the analog input.

Tunable Photonic Microwave Delay Line Filter Based on Fabry-Perot Laser Diode

  • Heo, Sang-Hu;Kim, Junsu;Lee, Chung Ghiu;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • We report the physical implementation of a tunable photonic microwave delay line filter based on injection locking of a single Fabry-Perot laser diode (FP-LD) to a reflective semiconductor optical amplifier (RSOA). The laser generates equally spaced multiple wavelengths and a single tapped-delay line can be obtained with a dispersive single mode fiber. The filter frequency response depends on the wavelength spacing and can be tuned by the temperature of the FP-LD varying lasing wavelength. For amplitude control of the wavelengths, we use gain saturation of the RSOA and the offset between the peak wavelengths of the FP-LD and the RSOA to decrease the amplitude difference in the wavelengths. From the temperature change of total $15^{\circ}C$, the filter, consisting of four flat wavelengths and two wavelengths with slightly lower amplitudes on both sides, has shown tunability of about 390 MHz.

Tunable laser source using a self-seeding FP-LD (Self-seeding FP-LD을 이용한 파장 가변 레이저 광원)

  • Kim, Jung-Min;Lee, Hyuek-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.104-109
    • /
    • 2021
  • In this paper, we experimentally demonstrate a self-seeding FP-LD (Fabry Perot Laser Diode) to verify the possibility of a new tunable light source that can be used in WDM-PON (Wavelength Division Multiplexing - Passive Optical Network) system. The conventional implementation of WDM-PON using a tunable light source has a disadvantage that the center wavelength of the AWG (Arrayed Waveguide Grating) device and the tunable light source must be precisely aligned. However, the proposed tunable light source has the advantage that the tunable wavelength is automatically aligned with the center wavelength of the AWG as well as simple structure. The implemented tunable light source had a tunable band of about 14 nm or more, and the maximum RIN (Relative Intensity Noise) of about -124 dB/Hz, which showed the possibility of modulating 10 Gb/s signal by an external modulator.

Time-domain Large-signal Modeling of Injection-locked Fabry-Perot Laser Diode for WDM-PON (WDM-PON용 주입 잠금 패브리-페롯 레이저 다이오드의 시영역 대신호 모델링)

  • Lee, Seung-Hyun;Kim, Gun-Woo;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.74-81
    • /
    • 2010
  • A modeling methodology for the analysis of injection-locked Fabry-Perot laser diodes (FP-LDs), promising for cost-effective WDM-PON sources, is proposed. The time-domain large-signal model that is used is found to provide quite similar results to some experimental ones. With our methodology, we model characteristics of FP-LDs, such as influence of reflectivity at a facet and detuning on injection-locking. The eye diagram characteristics are also investigated. It is observed that the facet reflectivity at the injection side should be lower than 1% to provide stable operation in terms of good side-mode suppression ratio and independence from detuning between narrow-band injection noise and LD modes. It is also observed that good eye opening can be obtained for 155 Mbps modulation while the parameters such as the active region thickness should be properly optimized to obtain reasonable eye opening at 1.25 Gbps.