• Title/Summary/Keyword: FP

Search Result 879, Processing Time 0.034 seconds

A Study on the Quantitative Process Facility Standards that Require H2S Toxic Gas Detectors and Location Selection for Emergency Safety (H2S 독성가스감지기가 필요한 정량적 공정설비 기준 및 비상시 안전을 위한 위치선정 방안에 대한 연구)

  • Choi, Jae-Young;Kwon, Jung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Design techniques for minimizing the damage caused by leakage of $H_2S$ gas, contained in natural gas and petroleum, have been widely studied abroad in chemical plants that purify and process natural gas and petroleum. However, there is no domestic engineering practice and regulation of $H_2S$. In accordance with the circumstances, this study proposes the quantitative criteria of process equipment to install $H_2S$ toxic gas detector as 500 ppm and explains the valid basis. The $H_2S$ gas dispersion radius up to IDLH 100 ppm is calculated by ALOHA under previous $H_2S$ gas leak accident scenario. The weather conditions of modeling include the conditions of Ulsan, Yeosu and Daesan, the three major petrochemical complexes in Korea. The long radius up to 100 ppm was derived in order of Ulsan, Daesan, Yeosu. For emergency safety the dispersion radius up to 100 ppm of the $H_2S$ gas obtained in this study should be extended to apply the additional $H_2S$ toxic gas detector, and local climate conditions should be considered.

Interactive Projection by Closed-loop based Position Tracking of Projected Area for Portable Projector (이동 프로젝터 투사영역의 폐회로 기반 위치추적에 의한 인터랙티브 투사)

  • Park, Ji-Young;Rhee, Seon-Min;Kim, Myoung-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • We propose an interactive projection technique to display details of a large image in a high resolution and brightness by tracking a portable projector. A closed-loop based tracking method is presented to update the projected image while a user changes the position of the detail area by moving the portable projector. A marker is embedded in the large image to indicate the position to be occupied by the detail image projected by the portable projector. The marker is extracted in sequential images acquired by a camera attached to the portable projector. The marker position in the large display image is updated under a constraint that the center positions of marker and camera frame coincide in every camera frame. The image and projective transformation for warping are calculated using the marker position and shape in the camera frame. The marker's four corner points are determined by a four-step segmentation process which consists of camera image preprocessing based on HSI, edge extraction by Hough transformation, quadrangle test, and cross-ratio test. The interactive projection system implemented by the proposed method performs at about 24fps. In the user study, the overall feedback about the system usability was very high.

A Small-area Hardware Implementation of EGML-based Moving Object Detection Processor (EGML 기반 이동객체 검출 프로세서의 저면적 하드웨어 구현)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2213-2220
    • /
    • 2017
  • This paper proposes an efficient approach for hardware implementation of moving object detection (MOD) processor using effective Gaussian mixture learning (EGML)-based background subtraction method. Arithmetic units used in background generation were implemented using LUT-based approximation to reduce hardware complexity. Hardware resources used for both background subtraction and Gaussian probability density calculation were shared. The MOD processor was verified by FPGA-in-the-loop simulation using MATLAB/Simulink. The MOD performance was evaluated by using six types of video defined in IEEE CDW-2014 dataset, which resulted the average of recall value of 0.7700, the average of precision value of 0.7170, and the average of F-measure value of 0.7293. The MOD processor was implemented with 882 slices and block RAM of $146{\times}36kbits$ on Virtex5 FPGA, resulting in 60% hardware reduction compared to conventional design based on EGML. It was estimated that the MOD processor could operate with 75 MHz clock, resulting in real-time processing of $800{\times}600$ video with a frame rate of 39 fps.

Multi-view Generation using High Resolution Stereoscopic Cameras and a Low Resolution Time-of-Flight Camera (고해상도 스테레오 카메라와 저해상도 깊이 카메라를 이용한 다시점 영상 생성)

  • Lee, Cheon;Song, Hyok;Choi, Byeong-Ho;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.239-249
    • /
    • 2012
  • Recently, the virtual view generation method using depth data is employed to support the advanced stereoscopic and auto-stereoscopic displays. Although depth data is invisible to user at 3D video rendering, its accuracy is very important since it determines the quality of generated virtual view image. Many works are related to such depth enhancement exploiting a time-of-flight (TOF) camera. In this paper, we propose a fast 3D scene capturing system using one TOF camera at center and two high-resolution cameras at both sides. Since we need two depth data for both color cameras, we obtain two views' depth data from the center using the 3D warping technique. Holes in warped depth maps are filled by referring to the surrounded background depth values. In order to reduce mismatches of object boundaries between the depth and color images, we used the joint bilateral filter on the warped depth data. Finally, using two color images and depth maps, we generated 10 additional intermediate images. To realize fast capturing system, we implemented the proposed system using multi-threading technique. Experimental results show that the proposed capturing system captured two viewpoints' color and depth videos in real-time and generated 10 additional views at 7 fps.

A Comparative Study on Government R&D Evaluation System in Selected Countries (주요국의 정부 연구개발(R&D) 평가제도에 관한 비교 연구)

  • Kim, Jong-Woon;Ha, Kyu-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.77-90
    • /
    • 2013
  • This study is to seek measures for streamlining the evaluation system by analyzing the examples of advanced countries. This study was conducted, based on the relevant government policy documents and previous research papers, in the manner of comparing and analyzing the issues and cases regarding the government evaluation system of public-funded R&D programs in selected countries. In Korea, a national R&D performance evaluation system was introduced by law in 2006. In United States, Obama government has enhanced government performance management by signed into law the GPRA Modernezation Act of 2010. The Japanese Government issued a newly revised Guideline on National R&D Evaluation in late 2012. European Union has also been constantly updating its evaluation system for Framework Programmes(FPs) begun since 1984. This study gets some insights from the recent development of R&D evaluation in the other countries. It is important for the government R&D evaluation system to be in line with national S&T policy and agency's mission. In micro views, specific evaluation approaches and methods by types of various R&D programs should be more illustratively developed. Additionally it is suggested to monitor recent trends and techniques on R&D evaluation by participating in activities to communicate and share their knowledge and experiences in international evaluation research networks.

The Effects of Science and Art Integrated Program on Brain Activity of Gifted Students in Science (과학과 미술 통합프로그램이 초등과학영재의 뇌 활성에 미치는 효과)

  • Kwon, Young-Sik;Lee, Kil-Jae
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.4
    • /
    • pp.567-580
    • /
    • 2013
  • This study is to activate gifted students' brains for creativity ability and also an integrated science and art teaching program. The learning programs integrating science and art, which have 30 periods and 10 topics on art and the knowledge of science, were developed dependant on five steps - observing, having interests and curiosity, experimental designing and performing, internalizing, and expressing in an arts-based manner. This programs were applied to 20 senior gifted students in Y Elementary School in Gyeonggi province, by one group pretest-posttest design. The results from these integrated programs of science and art are as follows: First, in the performance of science tasks, prefrontal lobe(F7, FT7) of left brain increase the relative power of theta wave, whereas in the performance of drawing tasks increase the relative power of beta wave in prefrontal lobe(FP1) of left brain, bilateral frontal(F7, F3, Fz, F4, F8, FT7, FC3, FCz), bilateral temporal(T7, TP7, TP8, P7), parietal lobe of left brain(CP3, CPz, P3, Pz), bilateral occipital(O1, Oz, O2). Second, in the performance of science tasks, the relative power of beta wave activity in the left temporal lobe(T7) of the brains of talented students in science significantly decreased whereas it was greatly activated in another part, the left frontal lobe(F3) of the brain (p<.05). Third, in the performance of drawing tasks, the relative power of theta wave activity in five areas of the brain, namely the left temporal lobe(T7), the left frontal lobe(F3), the right frontal lobe(F4), and the left and right parietal lobes of gifted students in science who took the course of the integrated programs, was considerably increased statistically(p<.05). On top of that, these programs were especially effective in balancing the symmetrical development of both cerebral hemispheres by multiplying theta wave activity in the frontal lobes(F3, F4) and the parietal lobes(CP3, P3, P4), which are particularly related to creative thinking. According to the results of this study of brain-based teaching strategies combining science and art, it is an effective program to develop overall activate gifted students' brains for creativity ability. This is expected to be utilized to activate the brain areas for creativity of gifted students in science.

A Study on the HEVC Video Encoder PMR Block Design (HEVC 비디오 인코더 PMR 블록 설계에 대한 연구)

  • Lee, Sukho;Lee, Jehyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.141-146
    • /
    • 2016
  • HEVC/H.265 is the latest joint video coding standard proposed by ITU-T SG 16 WP and ISO/IEC JTC 1/SC29/WG 11. In H.265, pictures are divided into a sequence of coding tree units(CTUs), and the CTU further is partitioned into multiple CUs to adapt to various local characteristics. Its coding efficiency is approximately two times high compared to previous standard H.264/AVC. However according to the size of extended CU(coding unit) and transform block, the hardware size of PMR(prediction/mode decision/reconstruction) block within video encoder is about 4 times larger than previous standard. In this study, we propose a new less complex hardware architecture of PMR block which has the most high complexity within encoder without any noticeable PSNR loss. Using this simplified block, we can shrink the overall size the H.265 encoder. For FHD image, it operates at clocking frequency of 300 MHz and frame rate of 60 fps. And also for the test image, the Bjøntegaard Delta (BD) bit rate increase about average 30 % in PMR prediction block, and the total estimated gate count of PMR block is around 1.8 M.

Nucleophilic Fluorination Reactions in Novel Reaction Media for $^{18}F$-Fluorine Labeling Method ($^{18}F$-플루오린 표지를 위한 신개념 반응용매에서 친핵성 불소화 반응)

  • Kim, Dong-Wook;Jeong, Hwan-Jeong;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.91-99
    • /
    • 2009
  • Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography(PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with $^{18}F$-fluorine. In this review we describe recent methods and novel trends for the introduction of $^{18}F$-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic $^{18}F$-fluorination of some halo- and mesyloxyalkanes to the corresponding $^{18}F$-fluoroalkanes with $^{18}F$-fluoride obtained from an $^{18}O(p,n)^{18}F$ reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for $^{18}F$-fluorine labeling. Ionic liquid method is rapid and particularly convenient because $^{18}F$-fluoride in $H_2O$ can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with $^{18}F$-fluorine for PETimaging, and it is illustrated by the synthesis of $^{18}F$-fluoride radiolabeled molecular imaging probes, such as $^{18}F$-FDG, $^{18}F$-FLT, $^{18}F$-FP-CIT, and $^{18}F$-FMISO, in high yield and purity and in shorter times compared to conventional syntheses.

A Hand Gesture Recognition System using 3D Tracking Volume Restriction Technique (3차원 추적영역 제한 기법을 이용한 손 동작 인식 시스템)

  • Kim, Kyung-Ho;Jung, Da-Un;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.201-211
    • /
    • 2013
  • In this paper, we propose a hand tracking and gesture recognition system. Our system employs a depth capture device to obtain 3D geometric information of user's bare hand. In particular, we build a flexible tracking volume and restrict the hand tracking area, so that we can avoid diverse problems caused by conventional object detection/tracking systems. The proposed system computes running average of the hand position, and tracking volume is actively adjusted according to the statistical information that is computed on the basis of uncertainty of the user's hand motion in the 3D space. Once the position of user's hand is obtained, then the system attempts to detect stretched fingers to recognize finger gesture of the user's hand. In order to test the proposed framework, we built a NUI system using the proposed technique, and verified that our system presents very stable performance even in the case that multiple objects exist simultaneously in the crowded environment, as well as in the situation that the scene is occluded temporarily. We also verified that our system ensures running speed of 24-30 frames per second throughout the experiments.

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.