• Title/Summary/Keyword: FOV Model

Search Result 33, Processing Time 0.032 seconds

Image Data Loss Minimized Geometric Correction for Asymmetric Distortion Fish-eye Lens (비대칭 왜곡 어안렌즈를 위한 영상 손실 최소화 왜곡 보정 기법)

  • Cho, Young-Ju;Kim, Sung-Hee;Park, Ji-Young;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Due to the fact that fisheye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Not only use the camera as a viewing system, but also as a camera sensor, camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. In this thesis, we introduce a geometric correction technique to minimize the loss of the image data from a vehicle fish-eye lens having a field of view over $180^{\circ}$, and a asymmetric distortion. Geometric correction is a process in which a camera model with a distortion model is established, and then a corrected view is generated after camera parameters are calculated through a calibration process. First, the FOV model to imitate a asymmetric distortion configuration is used as the distortion model. Then, we need to unify the axis ratio because a horizontal view of the vehicle fish-eye lens is asymmetrically wide for the driver, and estimate the parameters by applying a non-linear optimization algorithm. Finally, we create a corrected view by a backward mapping, and provide a function to optimize the ratio for the horizontal and vertical axes. This minimizes image data loss and improves the visual perception when the input image is undistorted through a perspective projection.

Optimal Allocation Model of Anti-Artillery Radar by Using ArcGIS and its Specifications (지형공간정보와 제원 특성을 적용한 대포병레이더 최적배치모형)

  • Lee, Moon Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.74-83
    • /
    • 2018
  • It is very crucial activities that Korean army have to detect and recognize enemy's locations and types of weapon of their artillery firstly for effective operation of friendly force's artillery weapons during wartime. For these activities, one of the most critical artillery weapon systems is the anti-artillery radar (hereafter; radars) for immediate counter-fire operations against the target. So, in early wartime these radar's roles are very important for minimizing friendly force's damage because arbiters have to recognize a several enemy's artillery positions quickly and then to take an action right away. Up to date, Republic of Korea Army for tactical artillery operations only depends on individual commander's intuition and capability. Therefore, we propose these radars allocation model based on integer programming that combines ArcGIS (Geographic Information System) analysis data and each radar's performances which include allowable specific ranges of altitude, azimuth (FOV; field of view) and distances for target detection, and weapons types i.e., rocket, mortars and cannon ammo etc. And we demonstrate the effectiveness of their allocation's solution of available various types of radar asset through several experimental scenarios. The proposed model can be ensured the optimal detection coverage, the enhancement of artillery radar's operations and assisting a quick decision for commander finally.

Mathematical Modeling on AC Pollution Flashover Performance of Glass and Composite Insulator

  • Prakash, N.B.;Parvathavarthini, M.;Madavan, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1796-1803
    • /
    • 2015
  • While considering the current scenario, in this world power demand goes on increases day by day. Frequent power outages occur in high voltage transmission line due to the deprived performance of polluted insulators; this affects overall operation of power system and may indirectly impinge on the growth of production sector. Many researchers are keenly taking efforts to provide highly reliable and stable power to neediest. In this paper, A.C pollution flashover performance of disc type glass insulator and composite long rod insulators investigation under various artificial pollutions by varying Equivalent Salt Density Deposition (ESDD) levels. Here, we use different types of pollution methods like binding method, dipping method and spraying methods with different types of pollutants concentration. Based on dimensional analysis, four different Mathematical models have been developed to predict the A.C pollution Flashover Voltage (FOV) of insulators. Both the experimental and mathematically modeled results are compared; it's observed that mathematical model 3 yields better results.

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • Seong, Sehyun;Kim, Sug-Whan;Ryu, Dongok;Hong, Jinsuk;Lockwood, Mike
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF

Simulation of 2-color Concentric Annular Ring Reticle Seeker and Counter-countermeasure using LMS Algorithm (2-color 동심원 레티클 탐색기의 시뮬레이션 및 LMS 방법을 이용한 반대응능력)

  • 홍현기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1990-1999
    • /
    • 2001
  • This paper presents a dynamic simulation loop that gives tracking results of 2-color concentric annular ring (CAR) reticle seeker. Our simulation tool includes the target/flare model and a proportional navigation guidance (PNG) loop. The CAR reticle system performances and the flare effects are analyzed in various scenarios. When a flare is present in the field of view (FOV), the simulation results show that the reticle seeker cannot keep a precise target tracking. In this paper, we propose 2-color counter-countermeasure (CCM) using the least mean square (LMS) method to cope with a presence of IR flare. The proposed method makes a simultaneous process in two infrared (IR) wavelength bands: MWIR add SWIR. The simulation results have shown that our adaptive IRCCM algorithm can achieve an effective cancellation of the flare signal with a relatively high intensity.

  • PDF

The Software Development for Diffusion Tensor Imaging

  • Song, In-Chan;Chang, Kee-Hyun;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.112-112
    • /
    • 2001
  • Purpose: We developed the software for diffusion tensor imaging and evaluated its feasibility in norm brains. Method: Five normal volunteers, aged from 25 to 29 years, were examined on a 1.5 T MR system. the diffusion tensor pulse sequence used a SE-EPI with 6 diffusion gradie directions of (1, 1, 0), (-1, 1,0), (1, 0, 1), (-1, 0, 1), (0, 1, 1), (0, 1, -1) and also with no diffusion gradient. A b-factor of 500 sec/mm2 was used. Measurement parameter were as follows; TR/TE=10000 ms/99 ms, FOV=240 mm, matrix=128$\times$128, slice thickness/gap=6 mm/0 mm, bandwidth=91 kHz and the number of total slices=20. Four repeated axial diffusion images were averaged for diffusion tensor imaging. A total scan 11 of 4 min 30 sec was used. Six full diffusion tensor components of Dxx, Dyy, Dzz, Dxy, Dxz and Dyz were obtained using two-point linear regression model from 7 diffusion-weight images at each pixel and fractional anisotropy and lattice index images was estimated fr their eigenvectors and eigenvalues. Our program was written on a platform of IDL. W evaluated the qualities of fractional anisotropy and lattice index images of normal brains a knew whether our software for diffusion tensor imaging may be feasible.

  • PDF

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

Development of A Vision-based Lane Detection System with Considering Sensor Configuration Aspect (센서 구성을 고려한 비전 기반 차선 감지 시스템 개발)

  • Park Jaehak;Hong Daegun;Huh Kunsoo;Park Jahnghyon;Cho Dongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.97-104
    • /
    • 2005
  • Vision-based lane sensing systems require accurate and robust sensing performance in lane detection. Besides, there exists trade-off between the computational burden and processor cost, which should be considered for implementing the systems in passenger cars. In this paper, a stereo vision-based lane detection system is developed with considering sensor configuration aspects. An inverse perspective mapping method is formulated based on the relative correspondence between the left and right cameras so that the 3-dimensional road geometry can be reconstructed in a robust manner. A new monitoring model for estimating the road geometry parameters is constructed to reduce the number of the measured signals. The selection of the sensor configuration and specifications is investigated by utilizing the characteristics of standard highways. Based on the sensor configurations, it is shown that appropriate sensing region on the camera image coordinate can be determined. The proposed system is implemented on a passenger car and verified experimentally.

Design of spectrally encoded real-time slit confocal microscopy (파장 코딩된 실시간 슬릿 공초점 현미경의 설계)

  • Kim Jeong-Min;Kang Dong-Kyun;Gweon Dae-Gab
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.576-580
    • /
    • 2005
  • New real-time confocal microscopy using spectral encoding technique and slit confocal aperture is proposed and designed. Spectral encoding technique, which encodes one-dimensional spatial information of a specimen in wavelength, and slit aperture make it possible to obtain two-dimensional lateral image of the specimen simultaneously at standard video rates without expensive scanning units such as polygon mirrors and galvano mirrors. The working principle and the configuration of the system are explained. The variation in axial responses for the simplified model of the system with normalized slit width is numerically analyzed based on the wave optics theory. Slit width that directly affects the depth discrimination of the system is determined by a compromise between axial resolution and signal intensity from the simulation result. On the assumption of the lateral sampling resolution of 50 nm, design variables and governing equations of the system are derived. The system is designed to have the mapping error less than the half pixel size, to be diffraction-limited and to have the maximum illumination efficiency. The designed system has the FOV of $12.8um{\times}9.6um$, the theoretical axial FWHM of 1.1 um and the lateral magnification of-367.8.

  • PDF

Evaluation of Patient Exposure Dose during Cardiac Electrophysiology Study under Various Conditions (심장 전기생리학 검사 시 조건 변화에 따른 환자 피폭 선량 평가)

  • Seong-Bhin Koh;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2023
  • This study used a adult absorption dose phantom (CIRS model 701-G, USA) made of human equivalent material and the vascular imaging equipment Allura Xper FD 20 (Philips, Netherlands). Optically stimulated luminescent dosimeters (OSLD) were inserted into the anatomical positions corresponding to each organ, and the exposure dose was measured. Dose area product (DAP) and air kerma (AK) measured by the dose meter in the equipment were compared. Continuous imaging was performed at two angles for a total of 20 minutes, with a frame per seconds of 3.75 and 7.5 fps and an FOV of 42 cm, 37 cm, and 31 cm, respectively, under the conditions of fluoflavor I, II, and III, each selected for 5 repetitions. This study was found that selecting a lower fps was the most effective way to reduce patient exposure dose, and adjusting the fluoflavor was a good alternative method for reducing patient exposure dose at high fps. Therefore the method of condition change with the greatest dose reduction effect is to set the minimum FPS and can reduce patient exposure dose according to geometric conditions and fluoflavor characteristics.