• Title/Summary/Keyword: FOV

Search Result 340, Processing Time 0.024 seconds

Design and Analysis of Collimator in Spectrophotometer for Transmission Spectroscopy of Exoplanets

  • Choi, Yeonho;Kim, Kang-Min;Park, Chan;Jang, Jeong-Gyun;Han, Inwoo;Lee, Byeong-Cheol;Jang, Bi-Ho;Lee, Jong-Ung;Jeong, Eui-Jeong;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.68.1-68.1
    • /
    • 2020
  • 외계행성 대기 연구를 위한 투과스펙트럼 관측에 적합한 측분광기를 개발하고 있다. 이 측분광기의 광학적 특성은 380~685nm의 파장범위, FOV 10', R>~400이며, 슬릿부, collimator, VPH grism, imaging lens와 CCD로 구성되어 있는데, 보현산천문대 1.8m 망원경의 CIM(Cassegrain Interface Module)에 카트리지 방식으로 장착되어 사용한다. 그 중 doublet 렌즈 2개를 대칭으로 배치하여 초점거리 280mm가 되도록 만든 collimator는 슬릿을 통과한 f/8 입사광에서 지름 35 mm의 pupil을 만드는데, 이곳에 VPH grism을 설치하였다. collimator 렌즈는 axial spring과 radial spring으로 알루미늄 barrel에 고정하였다. 이 collimator barrel은 CIM에 쉽게 장탈착 할 수 있도록 모듈화 하였다. Collimator Barrel에 대한 구조 해석 결과, 망원경 이동에 따른 중력에 의한 변형은 충분히 작았다. Grism은 슬라이딩 형태로 장착되어 영상 확인도 가능하도록 설계하였다.

  • PDF

Evaluation of Patient Exposure Dose during Cardiac Electrophysiology Study under Various Conditions (심장 전기생리학 검사 시 조건 변화에 따른 환자 피폭 선량 평가)

  • Seong-Bhin Koh;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2023
  • This study used a adult absorption dose phantom (CIRS model 701-G, USA) made of human equivalent material and the vascular imaging equipment Allura Xper FD 20 (Philips, Netherlands). Optically stimulated luminescent dosimeters (OSLD) were inserted into the anatomical positions corresponding to each organ, and the exposure dose was measured. Dose area product (DAP) and air kerma (AK) measured by the dose meter in the equipment were compared. Continuous imaging was performed at two angles for a total of 20 minutes, with a frame per seconds of 3.75 and 7.5 fps and an FOV of 42 cm, 37 cm, and 31 cm, respectively, under the conditions of fluoflavor I, II, and III, each selected for 5 repetitions. This study was found that selecting a lower fps was the most effective way to reduce patient exposure dose, and adjusting the fluoflavor was a good alternative method for reducing patient exposure dose at high fps. Therefore the method of condition change with the greatest dose reduction effect is to set the minimum FPS and can reduce patient exposure dose according to geometric conditions and fluoflavor characteristics.

Proactive Longitudinal Motion Planning for Improving Safety of Automated Bus using Chance-constrained MPC with V2V Communication (자율주행 버스의 주행 안전을 위한 차량 간 통신 및 모델 예측 제어 기반 종 방향 거동 계획)

  • Ara Jo;Michael Jinsoo Yoo;Jisub Kwak;Woojin Kwon;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.16-22
    • /
    • 2023
  • This paper presents a proactive longitudinal motion planning algorithm for improving the safety of an automated bus. Since the field of view (FOV) of the autonomous vehicle was limited depending on onboard sensors' performance and surrounding environments, it was necessary to implement vehicle-to-vehicle (V2V) communication for overcoming the limitation. After a virtual V2V-equipped target was constructed considering information obtained from V2V communication, the reference motion of the ego vehicle was determined by considering the state of both the V2V-equipped target and the sensor-detected target. Model predictive control (MPC) was implemented to calculate the optimal motion considering the reference motion and the chance constraint, which was deduced from manual driving data. The improvement in driving safety was confirmed through vehicle tests along actual urban roads.

Study on Effective Visual Surveillance System using Dual-mode(Fixed+Pan/Tilt/Zoom) Camera (듀얼 모드(고정형+PTZ 카메라) 감시 카메라를 이용한 효과적인 화상 감시 시스템에 관한 연구)

  • Kim, Gi-Seok;Lee, Saac;Park, Jong-Seop;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.650-657
    • /
    • 2012
  • An effective dual-mode camera system(a passive wide-angle camera and a pan-tilt-zoom camera) is proposed in order to improve the performance of visual surveillance. The fixed wide-angle camera is used to monitor large open areas, but the moving objects on the images are too small to view in detail. And, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a specific moving target. However, its FOV (Field of View) is limited when zooming in on a specific target. Therefore, the cooperation of wide-angle and PTZ cameras is complementary. In this paper, we propose an automatic initial set-up algorithm and coordinate transform method from the wide-angle camera coordinate to the PTZ one, which are necessary to achieve the cooperation. The automatic initial set-up algorithm is able to synchronize the views of two cameras. When a moving object appears on the image plane of a wide-angle camera after the initial set-up positioning, the obtained values of the wide-angle camera should be transformed to the PTZ values based on the coordinate transform method. We also develope the PTZ control method. Various in-door and out-door experiments show that the proposed dual-camera system is feasible for the effective visual surveillance.

3D Measurement System of Wire for Automatic Pull Test of Wire Bonding (Wire bonding 자동 전단력 검사를 위한 wire의 3차원 위치 측정 시스템 개발)

  • Ko, Kuk Won;Kim, Dong Hyun;Lee, Jiyeon;Lee, Sangjoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1130-1135
    • /
    • 2015
  • The bond pull test is the most widely used technique for the evaluation and control of wire bond quality. The wire being tested is pulled upward until the wire or bond to the die or substrate breaks. The inspector test strength of wire by manually and it takes around 3 minutes to perform the test. In this paper, we develop a 3D vision system to measure 3D position of wire. It gives 3D position data of wire to move a hook into wires. The 3D measurement method to use here is a confocal imaging system. The conventional confocal imaging system is a spot scanning method which has a high resolution and good illumination efficiency. However, a conventional confocal systems has a disadvantage to perform XY axis scanning in order to achieve 3D data in given FOV (Field of View) through spot scanning. We propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array to remove XY scan. 2D imaging system can detect 2D location of wire and it can reduce time to measure 3D position of wire. In the experimental results, the proposed system can measure 3D position of wire with reasonable accuracy.

Study on the Interanal Physical Changes of Kiwi Fruit Using Magnetic Resonance Imaging Technique (자기공명영상 기술을 이용한 저장 중 키위의 내부 변화 연구)

  • Baek, Seung Hoon;Kim, Myoung Ho;Choi, Kyu Hong;Kim, Seong Min
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.96-96
    • /
    • 2017
  • 농산물 수확 이후 저장 유통 과정에서 일어나는 생리적 현상 변화에 따른 내부품질의 측정 분석연구가 활발히 진행되고 있다. 이 연구에서는 비파괴 측정 방법들 중 하나인 자기공명영상(Magnetic Resonance Imaging, MRI) 기술을 활용하여 후숙 과일인 키위의 저장 일수에 따른 형태 및 내부 구조의 변화를 조사하였다. 공시재료는 국내에서 판매되고 있는 키위들 중 3품종(뉴질랜드산 Sun Gold, 뉴질랜드산 Green, 칠레산 Jin Green)별로 균일한 크기의 과일 5개씩을 이용하였으며, 시료를 실험실내($16.6^{\circ}C$, 38% RH)에서 18~19 일간 보관하면서 3~5일 간격으로 5회 시험하였다. 전북대 농업과학기술연구소가 보유하고 있는 MRI(M10, Aspect Imaging, Israel)를 활용하여 영상 이미지를 얻었으며, 저장 기간에 따른 무게 감소는 전자저울(한성, HK-series)을 이용하였다. 자기공명영상 이미지는 Gradient-Eco 펄스열을 사용하였고, 횡단면(Axial)의 영상면(Image-direction)을 중심으로 영상영역(Field of View, FOV)은 $80mm{\times}80mm$로 1회 촬영 할 때 마다 30개의 영상들을 얻었다. 저장 기간이 길어질수록 내부 공동현상이 커지는 것으로 나타났고, 뉴질랜드산 Sun Gold 품종은 다른 두 품종보다 내부 공동이 빠르게 나타났다. 실험이 끝나는 날에는 껍질이 연화되어 타원형의 형체를 계속 유지하지 못하고 붕괴되는 이미지를 MRI를 통해서 관찰 할 수 있었다. 시간이 지남에 따라 영상들의 위치가 일정하지 않고 일부 회전을 한 것처럼 나타났다. 이는 키위 전용 홀더를 만들어 고정하지 않고 측정하다보니 생긴 오차로 생각 되었다. 키위를 건조한 공간에 오래 보관하였기 때문에 시간이 지남에 따라 수분증발과 연화된 껍질 사이로 과육이 흘러 일부를 제외한 대부분의 키위 무게가 일정하게 감소하는 것을 알 수 있었다.

  • PDF

First-Pass Observation using Tailored-RF Gradient Echo (TRFGE) MR Imaging in Cat Brain (자기공명 Tailored-RF 경사자계반향영상법을 이용한 고양이 뇌에서의 First-Pass관찰)

  • 문치웅;노용만
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.209-216
    • /
    • 1995
  • Recently, a new tailored RF gradient echo (TRFGE) sequence was reported. This technique not only enhances the magnetic susceptibility effect but also allows us to measure local changes in brain oxygenation. In this study, a phantom and cat brain experiments were performed on a 4.7 Tesla BIQSPEC (BRUKER) instrument with a 26 cm gradient system. We have demonstrated that the signal intensity (SI) of the TRFGE sequence varies according to the concentration of susceptibility contrast agent. Three capillary tubes with different concentrations of Gd-DTPA (0.01, 0.05, 0.1 mMOI/l) were placed at the middle of a cylindrical water phantom. Using both TRFGE and conventional gradient echo (CGE) sequences, phantom images of the slices which contain all three tubes were obtained. For the animal experiment, cats were anesthetized and ventilated using halotane (0.5%) and a $N_2O/ O_2$ mixture (2:1), and blood pressure and heart rate were monitored and kept normal. For the observation of tue first pass of Gd- DTPA, imaging was started at t = 0. At t = 8 ~ 12s, 0.2 mMol/Kg Gd-DTPA was manually injected in the femoral vein. The imaging parameters were TRITE = 25/10 msec, flip angle = $30^{\circ}$, FOV = 10cm, image matrix size = $128{\times}128$ with 64 phase encodings and the image data acquisition window was 10 msec. SI-time curves were then obtained from a series of 30 images which were collected at 2 sec intervals using both CGE and TRFGE pulse sequences before, during, and following the contrast injection.

  • PDF

Distortion Calibration and FOV Adjustment in Video See-through AR using Mobile Phones (모바일 폰을 사용한 비디오 투과식 증강현실에서의 왜곡 보정과 시야각 조정)

  • Widjojo, Elisabeth Adelia;Hwang, Jae-In
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • In this paper, we present a distortion correction for wearable Augmented Reality (AR) on mobile phones. Head Mounted Display (HMD) using mobile phones, such as Samsung Gear VR or Google's cardboard, introduces lens distortion of the rendered image to user. Especially, in case of AR the distortion is more complicated due to the duplicated optical systems from mobile phone's camera and HMD's lens. Furthermore, such distortions generate mismatches of the visual cognition or perception of the user. In a natural way, we can assume that transparent wearable displays are the ultimate visual system which generates the least misperception. Therefore, the image from the mobile phone must be corrected to cancel this distortion to make transparent-like AR display with mobile phone based HMD. We developed a transparent-like display in the mobile wearable AR environment focusing on two issues: pincushion distortion and field-of view. We implemented our technique and evaluated their performance.

The Ground Checkout Test of OSMI(Ocean Scanning Multispectral Imager) on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.375-380
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of<1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests and instrument aliveness/functional test as well, such as launch environment, on-orbit environment (Thermal/vacuum) and EMl/EMC test were performed at KARI. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite in the late 1999 and the image is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

  • PDF

Performance Measurement of SMT(Slewing Mirror Telescope) Optical System

  • Ahn, Ki-Beom;Jeong, Soo-Min;Kim, Ji-Eun;Kim, Sug-Whan;Lee, Jik;Lim, Heui-Jin;Lindere, V.;Nam, Ji-Woo;Nam, Koo-Hyun;Park, Il-H.;Smoot, G.F.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.1-23.1
    • /
    • 2011
  • The SMT is a subsystem of the UFFO (Ultra-Fast Flash Observatory) pathfinder onboard the Lomonosov spacecraft planed to be launched in November 2011. The UFFO is designed for extremely fast observation of optical afterglow of Gamma Ray Burst (GRB). This study is primarily concerned with performance measurement of the SMT optical system under the integration and test phase. SMT is a 100mm Ritchey-Chretien type telescope with a motorized slewing mirror and a $256{\times}256$ pixels Intensified Charge-Coupled Device (ICCD) of 22.2${\mu}m$ in pixel size. SMT is designed to operate over the wavelength coverage between 200 nm and 650 nm. It has 17 arcmin FOV (Field of View), providing 4arcsec in detector pixel resolution. In this study, we describe the integration and test process of the SMT optical system and interim performance measurement results with motorized slewing mirror and ICCD.

  • PDF