• Title/Summary/Keyword: FOOT REACTION FORCE

Search Result 130, Processing Time 0.028 seconds

Effects of Water Exercise on the Foot Pressure Distribution of a Female Adult with Hemiplegia: A Biomechanical Case Study

  • Lee, In-Woo;Kim, Jin-Ki;Yang, Jeong-Ok;Lee, Joong-Sook;Lee, Bom-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.179-187
    • /
    • 2013
  • This case study was conducted to determine the effects of water exercise on the foot pressure distribution (FPD) of persons who have a hemiplegia. A 43-year old female with hemiplegia acquired at the age of 3 years was selected from a local disability program. A 12-week water exercise program (60 min. per session and twice a week) focusing on gait training was developed and implemented as the intervention of this study. A recent product of the Pedar-X (Novel, Germany) was used to measure the FPD of hemiplegic gait before and after the intervention. Variables considered in this study included the average pressure (AP), contact area (CA), maximum pressure (MP), ground reaction force (GRF), and center of pressure (COP). The data collected were analyzed via the descriptive statistics and qualitative analyses on the graphical presentations of the FPD. Results revealed that the AP and CA of the hemiplegic foot was considerably increased before and after the intervention. Similar results were also found in the MP and GRF. Additionally, the graphical route of the COP related to hemiplegic foot was changed in a positive way after the intervention. It can be concluded that water exercise may be beneficial to restore hemiplegic gait. Limitations related to measurement and generalizability are further discussed.

ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot

  • Hwang, Byung-Hun;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2271-2274
    • /
    • 2005
  • The desired ZMP is different from the actual ZMP of a humanoid robot during actual walking and stand upright. A humanoid robot must maintain its stable posture although external force is given to the robot. A humanoid robot can know its stability with ZMP. Actual ZMP may be moved out of the foot-print polygons by external disturbance or uneven ground surfaces. If the position of ZMP moves out of stable region, the stability can not be guaranteed. Therefore, The control of the ZMP is necessary. In this paper, ZMP control algorithm is proposed. Herein, the ZMP control uses difference between desired ZMP and actual ZMP. The proposed algorithm gives reaction moment with ankle joint when external force is supplied. 3D simulator shows motion of a humanoid robot and calculated data.

  • PDF

Biomechanical Analysis for the Development of Windlass Mechanism for Trail-walking Shoe (윈들라스 메커니즘을 적용한 트레일 워킹화 개발을 위한 생체역학적 분석)

  • Park, Jong-Jin;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.489-498
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the effects of the windlass mechanism in trail-walking shoe prototypes that can effectively support arches. A study of these effects should help with the development of a first-rate trail-walking shoe development guide for the distribution of quality information to consumers. Methods : The subjects were ten adult males who volunteered to participate in the study. Shoes from three companies, which will be referred to as Company S (Type A), Company M (Type B), and Company P (Type C), were selected for the experiment. The subjects wore these shoes and walked at a speed of 4.2 km/h, and as they tested each shoe, the contact area, maximum pressure average, and surface force were all measured. Results : Shoe Type A showed a contact area of $148.78{\pm}4.31cm^2$, Type B showed an area of $145.74{\pm}4.1cm^2$, and Type C showed an area of $143.37{\pm}4.57cm^2$ (p<.01). Shoe Type A demonstrated a maximum average pressure of $80.80{\pm}9.92kPa$, Type B an average of $85.72{\pm}11.01kPa$, and Type C an average of $89.12{\pm}10.88bkPa$ (p<.05). Shoe Type A showed a ground reaction force of $1.13{\pm}0.06%BW$, Type B a force of $1.16{\pm}0.04%BW$, and Type C a force of $1.16{\pm}0.03%BW$ (p<.05). Conclusion : The Type A trail-walking shoe, which was designed with a wide arch from the center of the forefoot to the front of the rearfoot showed excellent performance, however, more development and analysis of the windlass mechanism for a variety of arch structures is still necessary.

Analysis of the Plantar Pressure on the Flat and Slope Walking by Insole Type

  • Kim, Bu Gan;Lee, Joong Sook;Yang, Jeong Ok;Lee, Bom Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.165-173
    • /
    • 2018
  • Objective: The purpose of this study is to provide biomechanical basis data for the analysis of the maximum vertical ground reaction force, the maximum plantar pressure, the average plantar pressure, and the contact area according to the type of the insole through the insole insertion type foot pressure gauge. Method: In the treadmill, the slope was set at 10%, the first type A was worn at a walking speed of 3.5 km / h, and then walking was carried out using B, C, and D types. Data from 20 boots with consistent walking were extracted and plantar pressure data were collected and analyzed. Results: Functional insole was more effective than conventional insole for maximum vertical ground reaction force, maximum plantar pressure, average plantar pressure, and contact area at 10% of treadmill ramps. Conclusion: In this study, D-type insole supports the cushion in the middle part and supports the heel cup with hardness in the hind part, so that it is the most effective insole by lowering the plantar pressure and dispersing it more widely.

The Effect of Using Standing Step Condition on Biomechanical Variables during Jab in Boxing (복싱 잽(jab) 동작 시 제자리 스텝의 사용이 운동역학적 변인에 미치는 영향)

  • Lee, Seong-Yeol;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.232-240
    • /
    • 2020
  • The purpose of this study was to analyze the effect of using standing step condition on biomechanical variables during jab in boxing. For this purpose, eight orthodox type college boxers(age = 20.38±0.52 yrs, height = 172.38±5.80 cm, body mass = 63.45±8.56 kg, career = 6.00±1.07 yrs) who without injury to the musculoskeletal system participated in the experiment over the last year. In order to verify the effect of biomechanical variables using standing step during jab in boxing, the paired t-test (α = .05) statistical method was used. First, W.S(with-step) showed a greater impact force than N.S(non-step), and muscle activity was analyzed to be low. Second, it was analyzed that the pelvis and foot segments move faster because W.S affects the velocity of the anterior segment of the human body. Third, the rotational movement of the pelvis was faster in W.S. Fourth, W.S was analyzed to have greater ground reaction force in the anterior caused by the right and left foot than N.S. Through this, it was found that the use of the standing step during jab increases the ground reaction force the velocity and rotational movement of the human segment. Therefore, it was confirmed that it allowed a faster and more agile movement, and thus produces a greater impact force with relatively less muscle activity. Therefore, in order to effectively deliver a greater impact force to the opponent during the jab, it was effectively analyzed to accompany the standing step.

The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity (유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가)

  • Kwak, Chang-Soo;Kim, Hee-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

Development of lntelligent Shoe System to Measure Applied Force/Moment on the Sole of a Foot during Human Walking (사람 보행시 발바닥의 힘정보를 측정하기 위한 지능형 신발시스템 개발)

  • Kim, Gab-Soon;Kim, Hyeon-Min;Hu, Duck-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.79-86
    • /
    • 2008
  • This paper describes the development of wearing intelligent shoe system to measure applied forces and moments (ground reaction forces and moments) on the soles of feet during human walking. In order to walk safely, robot must get the intelligent feet with 6-axis force/moment sensors (Fx sensor (x-direction force sensor), Fy sensor, Fz sensor, Mx sensor (Mx : x-direction moment sensor), My sensor, and Mz sensor) and detect the forces and moments data from the sensors. And the feet must be controlled with the data and controllers. While a human is walking, the forces and moments should be measured and analyzed for robot's intelligent feet. Therefore, the wearing intelligent shoe system should be developed. In this paper, four 6-axis farce/moment sensors and two high speed measuring devices were designed and fabricated, and the wearing intelligent shoe system was made using these. The characteristic tests of the wearing intelligent shoe system were performed, and the forces and moments were detected using it.

Analyses of Patterns of Spins with Insole Foot-Pressure Distribution during a Figure Skating (Flying Sit Spin과 Flying Camel Spin 시 규정자세에 따른 족저압력패턴의 연구)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • The purpose of this study was to analyze the variables of plantar pressure distribution, the COG between Flying Sit Spin(FSS) and Flying Camel Spin(FCS) during a Figure Skating. In order to investigate the two types of spin mechanism in the Korea national of elite women Figure skaters(N=4), this study investigated the phase time, CA(contact area), MF(maximum force) Mean Force, and PP(peak pressure) Mean Force. The data was collected using PEDAR Mobile System which is the pressure distribution measuring devices. The obtained conclusions were as follow: During the two types of spins(FSS and FCS), the FCS is higher than the FSS on the MF(20%BW), PP(20%BW) variables during P4 phase, but the FSS is larger than the FCS in the CA, MF, and PP during P1, P2, P3 phase. Consequently, depend on the COP and the COG locations about the vertical ground reaction vector, the FCS comparatively excelled control of speed feedback than the FSS in the P4 phase.

Biomechanics analysis by success and failure during golf putting swing (골프 퍼팅 스윙시 성공과 실패에 따른 운동역학적 분석)

  • Choi, Sung-Jin;Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.279-293
    • /
    • 2002
  • In the study the subjects who 10 university golfers act, and the kinetic factors were analyzed by the ground reaction system. the conclusion are as follows. 1) In the golf putting swing, the ground reaction factors of sagital plane in aspect are showen that the left and right foot sufficient difference, in the level of p <.05. 2) In the golf putting swing, the ground reaction factors of frontal plane in aspect is showen that the left foot has no significant difference in AD BS in the level of p < .05. In success, IP, FS. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 3) In the golf putting swing, the ground reaction factors of the vertical plane in aspect are shown that the left foot has no significant difference in BS, FS in the level p < .05. In success, AD, IP. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 4) In the golf putting swing, the ground reaction factors of torque in aspect are shown that the left foot had no significant difference in BS in the level p < .05. In success, AD, IP, FS. It can show significant difference. In addition, the right foot has no significant difference in IP in the level p < .05. AD, BS, FS. There is significant difference. The summarized conclusions are as follows. The first that the power of sagital plane needs the motion which can get the good power change in the stabilized pose. The second is that the small motion can make good putting in stabilized pose. The third is that the body weight move to the direction of the ball. The fourth is that the putting which looks perfect oscillation is good motion.

The Analysis of GRF during Golf Swing with the Slopes (골프 스윙 시 경사면에 따른 지면 반력 분석에 관한 연구)

  • Moon, G.S.;Choi, H.S.;Hwang, S.H.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.187-194
    • /
    • 2007
  • The purpose of this study is to determine the characteristics of ground reaction force(GRF) in golf swing for various slopes of flat lie and uphill lies of 5 and 10 degrees. Five right-handed professional golfers were selected for the experiment and the 7 iron club was used. We used four forceplates to measure GRF and synchronized with the three-dimensional motion analysis system. Results showed that slope did not affect the total time for golf swing, but the time until the impact had a tendency to slightly increase for the uphill lie(p<0.05). The medial-lateral GRF of the right foot increased toward the medial direction during back swing, but less increases were found with the angle of uphill lie(p<0.05). The GRF of the left foot increased rapidly toward the medial direction at the uncocking and the impact during down swing, but decreased with the increase in the angle of uphill lie(p<0.05). The anterior-posterior GRF of both feet showed almost the same for different slopes. With the slopes, the vertical GRF of the right foot increased, but the vertical GRF of left foot decreased(p<0.05). Uphill lies would have negative effect to provide the angular momentum during back swing, restricting pelvic and trunk rotations, and to provide the precise timing and strong power during down swing, limiting movements of body's center of mass. The present study could provide valuable information to quantitatively analyze the dynamics of golf swing. Further study would be required to understand detailed mechanism in golf swing under different conditions.