• 제목/요약/키워드: FMVSS201 Test

검색결과 3건 처리시간 0.014초

단품 압궤 시뮬레이션을 이용한 FMH 충격흡수부재의 설계방법에 관한 연구 (Designing FMH Impact-Absorbing Structure by Using Subcomponent Collapse Simulation)

  • 김지훈;전인기;최재민;김성훈
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.1113-1118
    • /
    • 2010
  • 차량의 내장부품 설계에 있어 내장 부품의 탑승자 보호를 위한 FMVSS 201 법규에 따른 FMH 충격성능 만족을 위한 충격흡수구조 설계 방법이 필요하다. 충격흡수구조 설계 과정에 있어 FMH 충격 성능은 헤드라이닝의 타격 위치 및 헤드폼의 접근각에 따라 위치별로 각각 다르게 설정되며, FMH 충격 흡수부재는 위치에 따른 차체의 강성 및 상관부품을 고려하여 각 타격 위치에 따른 적절한 충격 흡수 성능을 가져야 하며 차체 강성의 변화를 고려한 효율적인 설계 방법이 필요하다. 본 연구에서는 충격 흡수구조 설계 과정에 있어 초기 설계안에 대한 충격 강도 검토의 시간을 줄이기 위해 전차량 시뮬레이션에서 수행하던 FMH 충격흡수부재 설계를 단위 모델의 압궤 시뮬레이션을 통해 진행함으로써 보다 빠르고 효율적으로 타격 위치별 적합한 충격 흡수구조를 설계하는 방법을 검토하였다.

1톤급 상용차 시트 개발에 따른 FMVSS 210 Model 구조 강도 평가 연구 (A Study on the Structural Strength Evaluation for the Development of One-ton Grade Commercial Vehicle Seat Frame for the FMVSS 201 Model)

  • 조규춘;하만호;문홍주;김영곤
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.130-136
    • /
    • 2018
  • This study develops a seat with electric motor technology for a one-ton grade commercial vehicle. While applying electric motor technology, the FMVSS 210 seat frame strength test is also conducted to examine the product's weak parts. The seat frame strength test used the FMVSS 210 test standard and the ANSYS program was used to simulate the test and identify weak parts in the deformation and strain values. The test results showed that the cushion frame and slide rail connection bracket were fractured at loads of about 10,000 N. Similarly, the maximum stress and strain values in the bracket were obtained in the simulation results. On this basis, it was evaluated that the connection part bracket was a considerably weak part in the case of the first model, and changing the shape of the bracket and reinforcing the strength were required. In addition, the seat belt anchorage test results and simulation results were compared to assure their validity. In the comparison results, the error for each is about 5-10%. Therefore, the simulation performed in this study is considered to have produced reasonably accurate results.

자동차 시트 가상설계와 성능평가를 위한 통합시스템 개발 (Development of Integrated System for Virtual Design and Performance Testing of Automobile Seat)

  • 임오강;유완석;정융호;김광석;이진식;노효철
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1779-1786
    • /
    • 2000
  • Most of traditional design processes of mechanical parts are regarded as sequential and discrete, since different kinds of softwas should be introduced. In this paper, we develop an integrated fram ework for virtual design and performance testing of an automobile seat. The system is composed of four modules, i.e. CAD, static analysis, dynamic analysis, and draft drawing module. In the CAD module, PRO/ENGINEER 3D seat model is created using parameters to be modified with the result of static and dynamic analysis. In the static analysis, headrest tere used in each design stage make it difficult to feedback their results to upstream process. These discrete processes may result in time loss and cost rise. In recent years, life cycle of product is reduced. To have competence with others, new concept design processt is simulated using ANSYS. In the dynamic analysis module, FMVSS201 test is simulated using DADS. Overall data flow is controlled by Motif. The advantage of the system is that even a novice can perform and review the whole design process, without a good hand at professional design/analysis S/W in each stage. The system also provides a virtual design space, where engineers in different development stage can access common data of design models. The concept could be applied to other fields and it could reduce time and money required in design process.