• Title/Summary/Keyword: FMIPv6 Security

Search Result 8, Processing Time 0.026 seconds

State of Art on Security Protocols for Fast Mobile IPv6 (고속의 이동 IPv6를 위한 보안 프로토콜 연구)

  • You, Il-Sun;Hori, Yoshiaki;Sakurai, Kouichi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.121-134
    • /
    • 2010
  • With the help of various Layer 2 triggers, Fast Handover for Mobile IPv6 (FMIPv6) considerably reduces the latency and the signaling messages incurred by the handover. Obviously, if not secured, the protocol is exposed to various security threats and attacks. In order to protect FMIPv6, several security protocols have been proposed. To our best knowledge, there is lack of analysis and comparison study on them though the security in FMIPv6 is recognized to be important. Motivated by this, we provide an overview of the security protocols for FMIPv6, followed by the comparison analysis on them. Also, the security threats and requirements are outlined before the protocols are explored. The comparison analysis result shows that the protocol presented by You, Sakurai and Hori is more secure than others while not resulting in high computation overhead. Finally, we introduce Proxy MIPv6 and its fast handover enhancements, then emphasizing the need for a proper security mechanism for them as a future work.

A Handover Authentication Scheme initiated by Mobile Node for Heterogeneous FMIPv6 Mobile Networks (이기종 FMIPv6 기반의 이동 망에서 이동 노드 주도형 핸드오버 인증 기법)

  • Choi, Jae-Duck;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.103-114
    • /
    • 2007
  • The existing handover authentication schemes have authentication delay and overhead of the authentication server since they have been separately studied handover authentication at the link layer and the network layer. This paper proposes a handover authentication scheme initiated by Mobile Node on FMIPv6 based mobile access networks. The main idea of the paper is to generate a session key at the mobile node side, and transfer it to the next Access Router through the authentication server. Also, the scheme has a hierarchical key management at access router. There are two advantages of the scheme. First, the generated session key can be utilized for protecting the binding update messages and also for access authentication. Second, hierarchical key management at the access router reduced the handover delay time. The security aspects on the against PFS, PBS, and DoS attack of proposed scheme are discussed.

A Study on Security Architecture for FMIPv6 (FMIPv6 적용을 위한 보안 아키텍처 연구)

  • Son Sang-Woo;Kim Mun-Gi;Rhee Byung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.1183-1186
    • /
    • 2006
  • FMIPv6는 Mobile IPv6에서의 빠른 핸드오버를 지원하기 위해 고안된 프로토콜이다. 이 프로토콜은 핸드오버시 이동할 라우터의 정보를 예측하여 Fast Binding Update(FBU)를 한다는 장점을 제공한다. 그러나, 현재 FMIPv6 프로토콜은FBU전송 시 이동 노드와 라우터 사이에 서로를 완벽히 신뢰할 수 없다는 문제점을 가진다. 이를 보완하기 위한 신뢰 보안기능이 요구되었다. 따라서, 본 논문에서는 FMIPv6 프로토콜을 구조적으로 보안성을 강화시킬 아키텍처를 제안하였다.

  • PDF

Mobility Management Scheme based on User Mobility QoS and Security-Effective Network in Heterogeneous Mobile Networks (이종의 모바일 네트워크에서 사용자 이동성 QoS와 보안효과적인 네트워크 기반의 이동성관리 기법)

  • Lee, Hyeungwoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.87-97
    • /
    • 2015
  • To support the efficient mobility MIPv6v, FMIPv6, HMIPv6 and host-based mobility management protocols have been developed. AAAC (Authentication, Authorization, Accounting and Charging) system is applied in this paper analyzed the the existing IPv6 PMIPv6, FPMIPv6 network security effective and IPv6 MMP (Mobile Management Protocol) Features and performance analysis is performed. And IPv6 MMP seamless transfer performance in terms of packet loss probability, will be analyzed. That can be efficiently used as a method for the integration of QoS and mobility so that you can manage and control the resources presented QoSB usage. Results of evaluation results showed a better overall fast handover structure of mobility management techniques. PMIPv6 and FPMIPv6 in many respects the most efficient structure that can be specifically, a fast handover of the structure of the network-based mobility management scheme showed the best results.

An Efficient Approach for Adaptation of MIPv6 in Roaming Environments

  • Jeong Yoon-su;Woo Sung-hee;Lee Sang-ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.341-344
    • /
    • 2005
  • Mobile IPv6(MIPv6) allows a Mobile Node to talk directly to its peers while retaining the ability to move around and change the currently used IP address. One of the major issues regarding the basic Mobile IPv6 protocol is related to the handover management of a mobile node. This paper proposes efficient approach for adaptation of MIPv6 sing context information in roaming environments. To investigate on a efficient and secure handover procedure, proposed approach method will give us the following advantages: (l)the intention of context is to reduce latency, packet losses and avoid re-initiation of signaling to and from mobile nodes,(2) FMIPv6 aims to reduce handover latency due to IP protocol operations as small as possible in comparison to the inevitable link switching latency.

  • PDF

Security Analysis and Implementation of Fast Inter-LMA domain Handover Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 LMA도메인 간 핸드오버 기법의 보안성 분석 및 구현)

  • Chai, Hyun-Suk;Jeong, Jong-Pil
    • The KIPS Transactions:PartC
    • /
    • v.19C no.2
    • /
    • pp.99-118
    • /
    • 2012
  • In PMIPv6-based network, mobile nodes can be made smaller and lighter because the network nodes perform the mobility management-related functions on behalf of the mobile nodes. The one of the protocols, Fast Handovers for Proxy Mobile IPv6(FPMIPv6)[1] has studied by the Internet Engineering Task Force(IETF). Since FPMIPv6 adopts the entities and the concepts of Fast Handovers for Mobile IPv6(FMIPv6) in Proxy Mobile IPv6(PMIPv6), it reduces the packet loss. Conventional scheme has proposed that it cooperated with an Authentication, Authorization and Accounting(AAA) infrastructure for authentication of a mobile node in PMIPv6, Despite the best efficiency, without begin secured of signaling messages, PMIPv6 is vulnerable to various security threats such as the DoS or redirect attAcks and it can not support global mobility between PMIPv. In this paper, we analyze Kang-Park & ESS-FH scheme, and then propose an Enhanced Security scheme for FPMIPv6(ESS-FP). Based on the CGA method and the pubilc key Cryptography, ESS-FP provides the strong key exchange and the key independence in addition to improving the weaknesses for FPMIPv6. The proposed scheme is formally verified based on Ban-logic, and its handover latency is analyzed and compared with that of Kang-Park scheme[3] & ESS-FH and this paper propose inter-domain fast handover sheme for PMIPv6 using proxy-based FMIPv6(FPMIPv6).

A Fast Authentication Method using Hash Value for Realtime Communication in Mobile IPv6 network (모바일 IPv6에서 실시간 통신을 위해 해쉬 값을 적용한 빠른 인증 기법)

  • Kang Hyung-Mo;Mun Young-Song
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.113-120
    • /
    • 2006
  • A node of mobile IPv6 moving foreign networks needs authentication process to support right services against from security threat. AAA is a trust infrastructure that authenticates, authorizes, and accounts nodes receiving a network service. And Mobile IPv6 Working Group recommends use of AAA infrastructure to authenticate mobile nodes. Event though AAA infrastructure provides strong authentication functions, it should exchange a lot of messages to authenticate mobile nodes every movement. The exchange of lots of messages causes latency and it is interfered with realization of real-time communication. This paper proposes an authentication method of improved speed using hash value of mobile node to reduce authentication latency. Directly after movement, a mobile node applying a Proposed method uses extended existing security authentication for a while and deletes the establishment latency of new security authentication. Performance evaluation of a proposed method verifies the efficiency through the analysis of cost comparison with other methods. The conclusion of performance evaluation is that the proposed method gets more 25% performance improvement than a general method when a mobile node moves another subnet.

An Authentication and Handoff Mechanism using AAA and HMIPv6 on NEMO Environment (이동 네트워크(NEMO)에서 HMIPv6를 적용한 AAA 인증 방안 연구)

  • Choi, Kyung;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.165-182
    • /
    • 2009
  • Mobile IPv6 spends considerable bandwidth considering that its signal volume is proportional to the mobile and also it should be strengthened to support the binding signal volume, the traffic, and effective mobility. So, the study in NEMO(Network Mobility), an extended version of Mobile IPv6, has been conducted. NEMO provides its mobility by putting several mobiles and more than one portable router into one unit called as mobile network. Because nodes access Internet via the portable router at this time, it receives transparency without any additional work and that much reduces binding signal while solving binding storm. By supporting mobility, NEMO is able to have various mobile structures which realize several networks hierarchically and it is necessary to improve its safety and security by authenticating among the upper networks or the lower ones while moving. Also, it is extremely required to begin a study in the device to improve efficiency accompanied with mobility, which is executed by the fast hand-off as well as the safe authentication. For those reasons, this paper not only classifies various NEMO mobile scenarios into 7 ways, but also provides AAA authentication of each scenario, the authentication through the safety authentication and fast handoff authentication using F+HMIPv6 and the way to reduce both signaling volume and packet delays efficiently during the handoff.