• Title/Summary/Keyword: FMD promoter

Search Result 2, Processing Time 0.029 seconds

Analysis of Heat Shock Promoters in Hansenula polymorpha: The TPS1 Promoter, a Novel Element for Heterologous Gene Expression

  • Amuel, Carsten;Gellissen, Gerd;Cor;Suckow, Manfred
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.247-252
    • /
    • 2000
  • The strength and regulatory characteristics of the heat-inducible HSA1, HSA2 and TPS1 promoters were compared with those of the well-established, carbon source-regulated FMD promoter in a Hansenula polymorpha-based host system in vivo. In addition, the Saccharomyces cerevisiae-derived ADH1 promoter was analysed. While ADH1 promoter showed to be of poor activity in the foreign host, the strength of the heat shock TPS1 promoter was found to exceed that of the FMD promoter, which at present is considered to be the strongest promoter for driving heterologous gene expression in H. polymorpha.

  • PDF

FMDV 2C Protein of Foot-and-mouth Disease Virus Increases Expression of Pro-inflammatory Cytokine TNFα via Endoplasmic Reticulum Stress (구제역바이러스의 FMDV 2C 단백질은 소포체 스트레스를 통해서 염증 유도 사이토카인 TNFα의 발현을 증가시킴)

  • Kang, Hyo Rin;Seong, Mi So;Nah, Jin Ju;Ryoo, Soyoon;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.285-290
    • /
    • 2020
  • Foot-and-mouth disease virus (FMDV), a member of the genus Aphthovirus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. FMDV causes various clinical symptoms, including severe inflammation in infected tissue. Genome RNA of FMDV shows a positive single-strand chain approximately 8.3 kb long and encodes a single long open reading frame (ORF). The ORF is translated into structural and non-structural proteins by viral proteases. The FMDV 2C protein is one of the non-structural proteins encoded by FMDV and plays a critical role in FMD pathogenesis, including inflammation, apoptosis, and viral replication. In this study, we examined whether FMDV 2C induces intracellular expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). FMDV 2C expression in pig IBRS-2 cells increased mRNA and protein expression of TNFα at the transcriptional level via activation of TNFα promoter. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress reducer, decreased TNFα expression induced by FMDV 2C. Activating transcription factor 4 (ATF4), a transcription factor mediating ER stress response, induced transactivation of TNFα promoter and expression of mRNA and protein of TNFα. However, the dominant negative mutant of ATF4 did not induce FMDV 2C-mediated TNFα expression. The results indicate that FMDV 2C protein increases clinical inflammation via ATF4-mediated TNFα expression and is associated with ER stress induction.