• Title/Summary/Keyword: FMCW LiDAR

Search Result 3, Processing Time 0.016 seconds

Development of Wideband Frequency Modulated Laser for High Resolution FMCW LiDAR Sensor (고분해능 FMCW LiDAR 센서 구성을 위한 광대역 주파수변조 레이저 개발)

  • Jong-Pil La;Ji-Eun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1023-1030
    • /
    • 2023
  • FMCW LiDAR system with robust target detection capabilities even under adverse operating conditions such as snow, rain, and fog is addressed in this paper. Our focus is primarily on enhancing the performance of FMCW LiDAR by improving the characteristics of the frequency-modulated laser, which directly influence range resolution, coherence length, and maximum measurement range etc. of LiDAR. We describe the utilization of an unbalanced Mach-Zehnder laser interferometer to measure real-time changes of the lasing frequency and to correct frequency modulation errors through an optical phase-locked loop technique. To extend the coherence length of laser, we employ an extended-cavity laser diode as the laser source and implement a laser interferometer with an photonic integrated circuit for miniaturization of optical system. The developed FMCW LiDAR system exhibits a bandwidth of 10.045GHz and a remarkable distance resolution of 0.84mm.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.