• Title/Summary/Keyword: FLOW-THROUGH METHOD

Search Result 2,862, Processing Time 0.039 seconds

Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method

  • Basit, Muhammad Abdul;Tian, Wenxi;Chen, Ronghua;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1886-1896
    • /
    • 2019
  • Modern small modular nuclear reactors can be built on a barge in ocean, therefore, their flow characteristics depend upon the ocean motions. In the present research, effect of rolling motion on flow and friction characteristics of laminar flow through vertical and horizontal narrow channels has been studied. A computer code has been developed using MPS method for two-dimensional Navier-Stokes equations with rolling motion force incorporated. Numerical results have been validated with the literature and have been found in good agreement. It has been found that the impact of rolling motions on flow characteristics weakens with increase in flow rate and fluid viscosity. For vertical narrow channels, the time averaged friction coefficient for vertical channels differed from steady friction coefficient. Furthermore, increasing the horizontal distance from rolling pivot enhanced the flow fluctuations but these stayed relatively unaffected by change in vertical distance of channel from the rolling axis. For horizontal narrow channels, the flow fluctuations were found to be sinusoidal in nature and their magnitude was found to be dependent mainly upon gravity fluctuations caused by rolling.

Security Analysis of Information Flow using SAT (SAT를 이용한 정보흐름의 안전성 분석)

  • Kim, Je-Min;Kouh, Hoon-Joon
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.253-261
    • /
    • 2016
  • As many people use internet through the various programs of PC and mobile devices, the possibility of private data leak is increasing. A program should be used after checking security of information flow. Security analysis of information flow is a method that analyzes security of information flow in program. If the information flow is secure, there is no leakage of personal information. If the information flow not secure, there may be a leakage of personal information. This paper proposes a method of analyzing information flow that facilitates SAT solver. The method translates a program that includes variables where security level is set into propositional formula representing control and information flow. The satisfiability of the formula translated is determined by using SAT solver. The security of program is represented through the result. Counter-example is generated if the program is not secure.

A Study on the Minimum Flow Frequency Analysis by SMEMAX Transformation (SMEMAX변환에 의한 온수빈도분석에 관한 연구)

  • 이순혁;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.138-144
    • /
    • 1987
  • This study was conducted to pursue the normalization of frequency distribution by making approach the coefficient of skewness to nearly zero tbrough SMEMAX transformation and to get probable minimum flows can be acquired by means of transforrnation equation which has been derivated by SMEMAX method to the annual minimum flow series of five watersheds along Geum river basin. The results obtained through SMEMAX method were compared with probable minimum flows according to return periods by Type III extremal distribution which has been determined as the best fitted one among probablility distributions for the analysis of minimum flow. All the results obtained through this study are summarized as follows. 1.SMEMAX transformation based on median value was proved to be the best method when the coefficient of skewness has less reliability because of the short duration for the observation and were not affected by accidental outliers. 2.SMEMAX transformation has found to be the best one for the coefficient of skewness to be made nearly zero in comparison with log and cubic root transformation. 3.Probable minimum flows according to the return periods were derivated by transformation equations obtained through theoretical analysis of SMEM AX transformation. 4.In general, probable minimum flows by SMEMAX method were appeared as higher values in the range of five and twenty years and as lower ones in the range of below than five and more than fifty years in return periods respectively, in comparison with the results of type III extremal distribution. 5.Relative errors in the probable minimum flows of SMEMAX method to the results of type III extremal distribution were shown to be within ten percent except those of one hundred years in return periods. 6.SMEMAX method was also confirmed to be useful for the analysis of minimum flow frequency as well as flood frequency analysis.

  • PDF

Evaluation of Fly Ash as an Alternative to Clay Liner Material in Landfills (플라이애쉬의 차수 및 오염물 차단 능력 평가 연구)

  • Jeong, Mun-Gyeong;Hyeon, Jae-Hyeok;Kim, Seung-Hyeon
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.191-204
    • /
    • 1998
  • The feasibility of fly ash was evaluated as an alternative liner material to the conventional clay liner of landfills through modeling and laboratory experiments. In order to consider the effect of unsaturation on water flow through the liner, analyses were made to compare flow characteristics in saturated liner with that of unsaturated one. Contaminant migration characteristics in liners were investigated by batch experiment and modeling, in which phenol was employed as a model was solved by numerical techniques of finite difference method and predictor-corrector method to deal with high non-linearity. Sequential method was used to handle the system of differential equations. Results show that the alternative liner material is more capable of cutting off water flow in unsaturated condition and in preventing phenol from passing through it. It can be seen that, under the flow conditions considered in this study, the conventional saturation approach underestimates the amount of water passing through the liner and doers the cut-off capability against phenol significantly.

  • PDF

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

A Study on Finding of Simplified Multiple Load Flow Solutions and Evaluating of Voltage Stability (간략조류계산법과 전압안정도 평가예 관한 연구)

  • Song, Kil-Young;Kim, Sae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.556-558
    • /
    • 1995
  • This paper presents a new simplified method for finding the multiple load flow solutions and through their solutions the voltage stability can be evaluated. Line flow($P_{ij}$, $Q_{ij}$) may be formulated with the second-order equations for $V_{i}^{2}$ in polar coordinates or two circle equations for $e_{i}$ and $f_{i}$ in rectangular coordinates. Based on this feature, multiple load flow solutions are calculated with simple works, results of multiple load flow solutions are used for sensitivity analysis of voltage stability. Also, in the case that reactive power sources is considered, method of evaluating the voltage stability is introduced. The proposed method was validated to 2-bus and IEEE 6-bus system.

  • PDF

Shear Flow Analysis of Aircraft Composite Wing Structure (항공기 복합재 날개구조 전단흐름 해석)

  • Choi Ik-Hyeon;Kim Seong-Chan;Kim Seong-Jun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.75-78
    • /
    • 2004
  • Traditionally aluminum alloy have been used in manufacturing of aircraft structures, and semi-monocoque structural concept have been mainly applied in structural design of fuselage and wing. However, recently monocoque structural concept is applied in many small-size aircraft structures manufactured with composite materials. In such case appling monocoque structural concept, in initial conceptual design stage on wing, it is not easy to analyze shear flow using classical shear flow analytical method because composite skin structure can support span-wise tension/compression stress as well as sectional shear stress. In this study, an extended shear-flow analytical method to apply to composite monocoque structural concept was developed through extending the classical shear-flow analytical method.

  • PDF

Development a numerical model of flow and contaminant transport in layered soils

  • Ahmadi, Hossein;Namin, Masoud M.;Kilanehei, Fouad
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.263-282
    • /
    • 2016
  • Contaminant transport in groundwater induces major threat and harmful effect on the environment; hence, the fate of the contaminant migration in groundwater is seeking a lot of attention. In this paper a two dimensional numerical flow and transport model through saturated layered soil is developed. Groundwater flow and solute transport has been simulated numerically using proposed model. The model implements the finite volume time splitting method to discretize the main equations. The performance, accuracy and efficiency of the out coming numerical models have been successfully examined by two test cases. The verification test cases consist of two-dimensional, groundwater flow and solute transport. The final purpose of this paper is to discuss and compare the shape of contaminant plume in homogeneous and heterogeneous media with different soil properties and control of solute transport using a zone for minimizing the potential of groundwater contamination; furthermore, this model leads to select the effective and optimum remedial strategies for cleaning the contaminated aquifers.

PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS (CFD를 이용한 분지관 비뉴턴 해석)

  • Hwang, D.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF

PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS (CFD를 이용한 분지관 비뉴턴 해석)

  • Hwang, D.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF