• Title/Summary/Keyword: FLC (Fuzzy Logic Control) system

Search Result 163, Processing Time 0.027 seconds

A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구)

  • Chung, Hyeng-Hwan;Kim, Sang-Hyo;Joo, Seok-Min;Lee, Jeong-Phil;Lee, Dong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming (유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구)

  • 이상부;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the intialized value is excellent. In case an unknown process or the mathematical modeling of a complicated system is impossible, a fit control quantity can be acquired by the Fuzzy inference. But FLC can not converge correctly to the desirable value because the FLC's output value by the size of the quantization level of the Fuzzy variable always has a minor error. There are many ways to eliminate the minor error, but I will suggest GA-FLC and EP-FLC Hybrid controller which csombines FLC with GA(Genetic Algorithm) and EP(Evo1ution Programming). In this paper, the output characteristics of this Hybrid controller will be compared and analyzed with those of FLC, it will he showed that this Hybrid controller converge correctly to the desirable value without any error, and !he convergence speed performance of these two kinds of Hyhrid controller also will be compared.

  • PDF

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Design of Adaptive Fuzzy Logic Controller for SVC using Tabu Search and Neural Network (Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyeon;Kim, Hyeong-Su;Park, Jun-Ho;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.188-195
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLS[10] for three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[10].

Optimization of Fuzzy Car Controller Using Genetic Algorithm

  • Kim, Bong-Gi;Song, Jin-Kook;Shin, Chang-Doon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.222-227
    • /
    • 2008
  • The important problem in designing a Fuzzy Logic Controller(FLC) is generation of fuzzy control rules and it is usually the case that they are given by human experts of the problem domain. However, it is difficult to find an well-trained expert to any given problem. In this paper, I describes an application of genetic algorithm, a well-known global search algorithm to automatic generation of fuzzy control rules for FLC design. Fuzzy rules are automatically generated by evolving initially given fuzzy rules and membership functions associated fuzzy linguistic terms. Using genetic algorithm efficient fuzzy rules can be generated without any prior knowledge about the domain problem. In addition expert knowledge can be easily incorporated into rule generation for performance enhancement. We experimented genetic algorithm with a non-trivial vehicle controling problem. Our experimental results showed that genetic algorithm is efficient for designing any complex control system and the resulting system is robust.

Design of Sophisticated Self-Tuning Fuzzy Logic Controllers Using Genetic Algorithms (유전알고리즘을 이용한 정교한 자기동조 퍼지 제어기의 설계)

  • Hwang, Yon-Won;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.509-511
    • /
    • 1998
  • Design of fuzzy logic controllers encounters difficulties in the selection of optimized membership function and fuzzy rule base, which is traditionally achieved by tedious trial-and-error process. In this paper We proposed a new method to generate fuzzy logic controllers throught genetic algorithm(GA). The controller design space is coded in base-7 strings chromosomes, where each bit gene matches the 7 discrete fuzzy value. The developed approach is subsequently applied to the design of proportional plus integral type fuzzy controller for a do-servo motor control system. It was presented in discrete fuzzy linguistic value, and used a membership function with Gaussian curve. The performance of this control system is demonstrated higher than that of a conventional PID controller and fuzzy logic controller(FLC).

  • PDF

A Study on the Control of Vehicle Suspension by using Electro-Rheological Fluid via FLC Technique (FLC를 이용한 전기유전유체를 사용한 차량현가장치의 제어에 관한 연구)

  • Kim, Haak-Kyun;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.203-208
    • /
    • 1996
  • This paper consider the control for the vehicle suspension system using electro-rheological damper. The study is performed by using of FLC(Fuzzy Logic Controller). The model used in the simulation is quarter car and the road disturbance is regarded as white noise random process with zero mean. Proposed control technique shows good agreement compared with the result from the conventional on-off/bang-bang type control technique.

  • PDF

A Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor Based on a Fuzzy Speed Compensator (퍼지 속도 보상기를 이용한 매입형 영구자석 동기 전동기의 센서리스 속도제어)

  • Kang, Hyoung-Seok;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1405-1411
    • /
    • 2007
  • In this paper, a new speed sensorless control based on a fuzzy compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional proportional plus integrate(PI) control are very sensitive to step change of the command speed, parameter variations and load disturbance. To cope with these problems of the PI control, the estimated speeds are compensated by using the fuzzy logic controller (FLC). In the FLC used by the speed compensator of the IPMSM, the system control parameters are adjusted by the fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

Design of the Adaptive Fuzzy Control Scheme and its Application on the Steering Control of the UCT (무인 컨테이너 운송 조향 제어의 적응 퍼지 제어와 응용)

  • 이규준;이영진;윤영진;이원구;김종식;이만형
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2001
  • Fuzzy logic control(FLC) is composed of three parts : fuzzy rule-bases, membership functions, and scaling factors. Well-defined fuzzy rule-base should contain proper physical intuition on the plant, so are needed lots of experiences of the skillful expert. When membership functions are considered, some parameters on the memberships function such as function shape, support, allocation density should be selected well. The rule of scaling factors is 'scaling'(amplifying or reducing) for both input and output signals of the FLC to fit in the membership function support and to operate the plant intentionally. To get a better performance of the FLC, it is necessary to adjust the parameters of the FLC. In general, the adaptation of the scaling factors is the most effective adjustment scheme, compared with that of the fuzzy rule-base or membership function parameters. This study proposes the adaptation scheme of the scaling factors. When the adaptation is performed on-line, the stability of the adaptive FLC should be guaranteed. The stable FLC system can be designed with stability analysis in the sense of Lyapunov stability. To adapt the scaling factors for the error signals, the concept of the conventional MRAC would be introduced into slightly modified form. A tracking accuracy of the control system would be enhanced by the modified shape and support of the membership function. The simulation is achieved on the pilot plant with the hydraulic steering control of a UCT(Unmanned Container Transporter) of which modeling dynamics have lots of severe uncertainties and modeling errors.

  • PDF

Design of an Adaptive Neurofuzzy-Based Power System Stabilizer (적응 뉴로 퍼지 전력계통 안정화 장치의 설계)

  • Jeong, Hyeong-Hwan;Jeong, Mun-Gyu;Kim, Sang-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.497-505
    • /
    • 2001
  • The power system stabilizer(PSS) is important for the suppression of low-frequency oscillation and the improvement of system stability. In this paper, An Adaptive Neurofuzzy-based Power System Stabilizer(ANF PSS) is proposed as the new PSS type. The proposed PSS employs a multi-layer adaptive network. The network is trained directly from the input and the output of the generating unit. The algorithm combines the advantages of the Artificial Neural Network(ANN) and Fuzzy Logic Control(FLC) schemes. Studies show that the proposed ANF PSS can provide good damping of the power system over the wide range of operating conditions and improve the dynamic performance of the system.

  • PDF