• Title/Summary/Keyword: FLC (Fuzzy Logic Control) system

Search Result 163, Processing Time 0.026 seconds

Fuzzy iterative learning controller for dynamic plants (퍼지 반복 학습제어기를 이용한 동적 플랜트 제어)

  • 유학모;이연정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.499-502
    • /
    • 1996
  • In this paper, we propose a fuzzy iterative learning controller(FILC). It can control fully unknown dynamic plants through iterative learning. To design learning controllers based on the steepest descent method, it is one of the difficult problems to identify the change of plant output with respect to the change of control input(.part.e/.part.u). To solve this problem, we propose a method as follows: first, calculate .part.e/.part.u using a similarity measure and information in consecutive time steps, then adjust the fuzzy logic controller(FLC) using the sign of .part.e/.part..u. As learning process is iterated, the value of .part.e/.part.u is reinforced. Proposed FILC has the simple architecture compared with previous other controllers. Computer simulations for an inverted pendulum system were conducted to verify the performance of the proposed FILC.

  • PDF

Design of Self-Orgnizing Fuzzy Controller for Real-Time Dynamic Control of AC1 Robot (AC1 로봇의 실시간 동적제어를 위한 자기구성 퍼지 제어기설계)

  • 김종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.125-130
    • /
    • 1999
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

A Design of the Robust Servo Controller for DC Servo-Motor Using Genetic Algorithm (유전알고리즘을 이용한 강인한 DC 서보제어기의 설계)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Hwang, Hyun-Joon;Nam, Jing-Lak;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we are applied the Genetic Algorithm (GA) to design of fuzzy logic controller (FLC) for a DC Servo-Motor Speed Control. GA is used to design of the membership functions and scaling factor of FLC. To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC servo-motor system with nonlinear characteristics. Experimental results show that proposed controller have better performance than those of PD controller.

  • PDF

Re-adhesion Control for Wheeled Robot Using Fuzzy Logic (퍼지 제어기를 이용한 이동 로봇의 재점착 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2423-2425
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient(AFC) according to slip velocity. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the re-adhesion control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. fuzzy logic controller(FLC) is petty useful with slip through that compare fuzzy with PI control for the controller performance. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

Reference Model Following Self-Organizing Fuzzy Logic Controller (기준모델 추종 자구구성 퍼지 논리 제어기)

  • 배상욱;권춘기;박귀태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.24-34
    • /
    • 1994
  • A RMFSOC(Reference Model Following Self-Organizing Fuzzy Logic Controller) is propose in this paper. In the RMFSOC, the refernce model is introduced, where the desired control performance can be specified by an operator of the controlled process. The self-organizing level of the RMFSOC organizes the control rules of FLC which make the process output follow the reference model output. In addition, for the use of preventing improper modifications of control rules, a complementary decission rule is induced from the possible relations between the process output and reference model output. Through a simulation study, it is shown that the robustness of the control system using the proposed RMFSOC to the set-point changes and distur bances can be greatly improved being conpared with that of the control system using the Procyk and Mamdani's SOC.

  • PDF

An Efficient Control Strategy Based Multi Converter UPQC using with Fuzzy Logic Controller for Power Quality Problems

  • Paduchuri, Chandra Babu;Dash, Subhransu Sekhar;Subramani, C.;Kiran, S. Harish
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.379-387
    • /
    • 2015
  • A custom power device provides an integrated solution to the present problems that are faced by the utilities and power distribution. In this paper, a new controller is designed which is connected to a multiconverter unified power quality conditioner (MC-UPQC) for improving the power quality issues adopted modified synchronous reference frame (MSRF) theory with Fuzzy logic control (FLC) technique. This newly designed controller is connected to a source in order to compensate voltage and current in two feeders. The expanded concept of UPQC is multi converter-UPQC; this system has a two-series voltage source inverter and one shunt voltage source inverter connected back to back. This configuration will helps mitigate any type of voltage / current fluctuations and power factor correction in power distribution network to improve power quality issues. In the proposed system the power can be conveyed from one feeder to another in order to mitigate the voltage sag, swell, interruption and transient response of the system. The control strategies of multi converter- UPQC are designed based on the modified synchronous reference frame theory with fuzzy logic controller. The fast dynamics response of dc link capacitor is achieved with the help of Fuzzy logic controller. Different types of fault conditions are taken and simulated for the analysis and the results are compared with the conventional method. The relevant simulation and compensation performance analysis of the proposed multi converter-UPQC with fuzzy logic controller is performed.

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads

  • Tuna, Murat;Fidan, Can Bulent;Kocabey, Sureyya;Gorgulu, Sertac
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2170-2178
    • /
    • 2015
  • This paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don’t require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

Design and Implementation of Fuzzy Logic Controller for Wing Rock

  • Anavatti, Sreenatha G.;Choi, Jin Young;Wong, Pupin P.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.494-500
    • /
    • 2004
  • The wing rock phenomenon is a high angle of attack aerodynamic motion manifested by limit cycle roll oscillations. Experimental studies reveal that direct control and manipulation of leading edge vortices, through the use of 'blowing' techniques is effective in the suppression of wing rock. This paper presents the design of a robust controller for the experimental implementation of one such 'blowing' technique - recessed angle spanwise blowing (RASB), to achieve wing rock suppression over a range of operating conditions. The robust controller employs Takagi - Sugeno fuzzy system, which is fine-tuned by experimental simulations. Performance of the controller is assessed by real-time wind tunnel experiments with an 80 degree swept back delta wing. Robustness is demonstrated by the suppression of wing rock at a range of angles of attack and free stream velocities. Numerical simulation results are used to further substantiate the experimental findings.