• Title/Summary/Keyword: FLAPW

Search Result 53, Processing Time 0.019 seconds

Magnetism and Magnetocrystalline Anisotropy of Ni/Fe(001) Surface: A First Principles Study (Ni/Fe(001)의 자성과 자기이방성에 대한 제일원리계산)

  • Kwon, Oryong;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.101-105
    • /
    • 2015
  • Recent theoretical calculations predicted that a system composed exclusively of 3d transition metals without 4d/5d transition metals or rare earth metals can have strong perpendicular magnetocrystalline anisotropy (MCA) if Fe and Ni layers are arranged appropriately. They considered only Fe-terminated surfaces, noting that Fe/MgO(001) and CoFeB/MgO(001) show strong perpendicular MCA. In this paper, we investigate magnetism and MCA of Ni/Fe(001) surface where Ni layer is positioned at the surface, by using complementarily the first principles calculational methods of Vienna Ab-initio Simulation Package (VASP) and Full-potential Linearized Augmented Plane Wave (FLAPW) method. Comparing results of magnetism and MCA obtained by VASP with the results by FLAPW method, we find the VASP results do not show big difference from results by FLAPW method. Magnetic moments of Fe and Ni are enhanced due to strong hybridization between Fe and Ni bands. MCA of Ni/Fe(001) is parallel to the surface, which implies the surface termination plays a crucial role in determining MCA of a system.

Magnetic Properties of Carbon Chains Doped with 4d Transition Metals

  • Jang, Y.R.;Lee, J.I.
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.7-10
    • /
    • 2008
  • The structural and magnetic properties of functionalized carbon chains doped with 4d transition metals, such as Ru, Rh, and Pd, were investigated using the full-potential linearized augmented plane wave (FLAPW) method. The carbon nanowire doped with Ru exhibited a ferromagnetic ground state with a sizable magnetic moment, while those doped with Rh and Pd had nonmagnetic ground states. For the Ru-doped chain, the density of states at the Fermi level showed large spin polarization, which suggests that the doped nanowire could be used for spintronic applications.

Magnetic Properties of Fe/Ni Thin Films: First Principles Study

  • Kim, Dong-Yoo;Hong, Ji-Sang
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.76-80
    • /
    • 2008
  • This study examined the magnetic properties of ultrathin Fe/Ni films on a Cu(001) surface using the full potential linearized augmented plane wave (FLAPW) method. The magnetic moment of Fe/Ni films was found to be insensitive to strain. Nevertheless, strain had a significant influence on the magnetization direction. For example, Fe/Ni films showed a thickness-dependent spin reorientation transition in the presence of strain, while the Fe/Ni films grown pseudomorphically on Cu(001) always showed perpendicular magnetization. In addition, the theoretically calculated X-ray magnetic circular dichroism (XMCD) was examined.

A Convergence Test of the Full-potential Linearized Augmented Plane Wave (FLAPW) Method: Ferromagnetic Bulk BCC Fe

  • Seo, Seung-Woo;Song, You-Young;Gul, Rahman;Kim, In-Gee;Weinert, M.;Freeman, A.J.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.137-143
    • /
    • 2009
  • The convergence behavior of the all-electron full-potential linearized augmented plane-wave (FLAPW) method with the explicit orthogonalization (XO) scheme is tested on ferromagnetic bulk body-centered-cubic Fe. Applying a commonly used criterion relating the plane-wave and angular momentum cutoffs, $l_{max}\;=\;R_{MT}K_{max}$, where $R_{MT}$ is the muffin-tin (MT) sphere radius and $K_{max}$ is the plane-wave cutoff for the basis - the total energy is converged and stable for $K_{max}R_{MT}$ = 10. The total energy convergence dependence on the star-function cutoff, $G_{max}$, is minimal and so a $G_{max}$ of 3$K_{max}$ or a large enough $G_{max}$ is a reasonable choice. We demonstrate that the convergence with respect to $l_{max}$ or a fixed large enough $G_{max}\;and\;K_{max}$ are independent, and that $K_{max}$ provides a better measure of the convergence than $R_{MT}K_{max}$. The dependence of the total energy on $R_{MT}$ is shown to be small if the core states are treated equivalently, and that the XO scheme is able to treat systems with significantly smaller $R_{MT}$ than the standard LAPW method. For converged systems, the calculated lattice parameter, bulk modulus, and magnetic moments are in excellent agreement with the experimental values.

Electronic and magnetic structure calculations of $La_2MnFeO_6$ with double perovskite oxide (이중 페로브스카이트 구조 $La_2MnFeO_6$의 전자구조와 자기구조 계산)

  • 박기택
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.3
    • /
    • pp.139-142
    • /
    • 2000
  • We present results based on FLAPW local spin density(LSD) calculations of double perovskite structure oxide L $a_2$MnFe $O_{6}$ . The total energy calculations with various spin structures show that this material has a stable ferromagnetic spin configuration. The ionic state of transition metals depend on the spin configuration $_Mn^{4+}$ and F $e^{2+}$ for ferromagnetic structure, M $n^{3+}$ and F $e^{3+}$ for ferrimagnetic structure). It is explained by super exchange interaction between transition metals. The calculated magnetic structure is well matched with recent experimental result.ult.t.

  • PDF

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

Magnetism and Electronic Structure of Tc Half-monolayer on Pd(oo1) Surface (Pd(001) 위에 올려진 Tc 0.5 웃층의 자성과 전자구조)

  • 김동철;이재일
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.223-226
    • /
    • 1999
  • We have investigated the magnetic properties and the electronic structures of Tc half-monolayer (0.5-ML) on Pd(001) using the full-potential linearized augmented plane wave(FLAPW) energy band method. We calculated the total energies for ferromagnetic and paramagnetic states to determine the stable magnetic state. The calculated results show that the total energy of the ferromagnetic state is lower than that of the paramagnetic one. The overlayer Tc 0.5-ML has considerably large magnetic moment $(2.09\;{\mu}_B)$, while the substrate Pd layers have been negatively polarized. The calculated density of states and total electrons inside the muffin-tin (MT) sphere are presented and discussed in relation with the magnetic properties.

  • PDF

First-principles Study on the Magnetism of VRu(001) Surface (VRu(001) 표면의 자성에 대한 제일원리 연구)

  • Jang, Y.R.;Song, Ki-Myung;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.109-113
    • /
    • 2007
  • We investigated the magnetic properties of VRu(001) surface by using the all electron full-potenial linearized augmented planewave (FLAPW) energy band method within the GGA. We consider two different configurations, V and Ru surface layers, respectively. The V atoms in surface layer was calculated to have large magnetic moment of $1.71_{{\mu}_B}$ while the Ru surface layer to have nearly nonmagnetic state. The calculated spin-polarized density of states. spin density contour, and charge density were discussed in relation to the magnetic properties of VRu(001) surface.

Li 단층의 전자적, 구조적 성질

  • 이재일;조이현;홍순철
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.169-172
    • /
    • 1993
  • 총에너지 FLAPW(Full-Potential Linearized Augmented Plane Wave) 띠 방법을 이용하여 Li 단층의 구조적, 전자적 성질을 연구하였다. 삼각형 격자와 사각형 격자 구조에 대해 Wigner-Seitz의 반경 $r_{s}$를 변화시키면서 총에너지를 계산한 결과 삼각형구조가 안정하였으며, $r_{s}$가 3.7 a.u. 일때 평형이 되었다. 삼각형구조의 자성을 연구하기 위해, 스핀분극을 계산한 결과 $r_{s}$가 4.2 a.u. 일때 금속 강자성 전이가 일어나며 $r_{s}$가 5.3 a.u. 에서 완전 스핀분극이 되었다.

  • PDF