• Title/Summary/Keyword: FLAC

Search Result 324, Processing Time 0.023 seconds

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.475-480
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating road. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF

Effects of Base Shape of Cantilever Retaining Wall in Soil Foundation on the Sliding Behavior (토사지반에 설치된 역 T형 옹벽의 저판형상이 활동거동에 미치는 영향)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Kim, Young-Gil;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.135-145
    • /
    • 1999
  • This thesis is to investigate the sliding behavior of cantilever retaining wall by using the commercially available program of FLAC to simulate its behavior numerically. Cantilever retaining walls with flat base, sloped base and base with shear key, uniform surcharges being applied on the surface of backfill, were investigated to figure out appropriate location of shear key beneath the base of wall and, thus, its applicability to field condition was assessed by comparing the analyzed results to each other. On the other hand, previously performed centrifuge model test results (Eum, 1996) were analyzed numerically with FLAC to compare test results with respect to characteristics of load-settlement of surcharges and load-lateral movement of wall. Based on the failure mechanism observed during centrifuge tests, limit equilibrium method of finding the ultimate load inducing the sliding failure of wall was used to compare with values of the ultimate load obtained from conventional method of limit equilibrium method. Therefore, appropriate location of shear key was determined to mobilize the maximum resistance against sliding failure of wall.

  • PDF

THM Coupling Analysis for Decovalex-2015 Task B2 (Decovalex-2015 Task B2를 위한 THM 해석기법 개발 및 적용)

  • Kwon, Sangki;Lee, Changsoo;Park, Seung-Hun
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.556-567
    • /
    • 2015
  • The evaluation of THM coupling behavior in deep underground repository condition is essential for the long term safety and stability assessment of high-level radioactive waste repository. In order to develop reliable THM analysis techniques effectively, an international cooperation project, DECOVALEX, is carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment planned to be conducted by JAEA was modeled by the research teams from the participating countries. In this study, a THM coupling technique combining TOUGH2 and FLAC was developed and applied to 1 dimensional THM modeling, in which rock, buffer, and heater are considered. The results were compared with those from other research teams.

A Numerical Analysis of Dynamic Behavior of Rock Mass with Intense Discontinuities (절리의 방향성을 고려한 암반의 동적거동 수치해석)

  • Ha, Tae-Wook;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.394-404
    • /
    • 2006
  • Dynamic behavior of rock structures depends largely on the dynamic characteristics of ground and input earthquake wave. For blocky rocks with intense discontinuities, the mechanical characteristics of blocks and structural and mechanical characteristics of discontinuities affect overall behavior. In this study, UDEC was adopted to evaluate the dynamic behavior of rocks with various structural characteristics. Obtained results were compared to those of $FLAC^{2D}$, a continuum analysis, and the validity of the method was examined for dynamic analysis of discontinuous rocks for earthquake. Analysis considering the discontinuity showed significant changes in structural shape by the influence of joint behavior, and the behavior by continuum analysis was overestimated.

Assessment of Static and Cyclic Load Model Test on Soft Clay Layer Reinforced by Geosynthetics (토목섬유로 보강한 연약지반의 정$\cdot$반복하중 모형실험에 의한 평가)

  • Kim Young-Su;Kwon Sung-Mok;Kim Yeun-Wook;Kim Hyoung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.179-186
    • /
    • 2005
  • Each static and cyclic load test was performed in a laboratory model test. As a result, ground displacement decreased and bearing capacity of the soil increased owing to the sheer strength of geosynthetics in general. In addition, numerical analysis was operated using Mohr-Coulomb, Modified Cam-Clay models, and FLAC 4.0 2D and compared with the laboratory model test. The results were shown to be of a great difference because the existing equations had not considered the characteristics that sheer strength increases with a load increment. Therefore, this paper proposes an equation of cable elements considering an effect of load given through repeated tests.

PLAXIS 3D simulation, FLAC3D analysis and in situ monitoring of Excavation stability

  • Lei, Zhou;Zahra, Jalalichi;Vahab, Sarfarazi;Hadi, Haeri;Parviz, Moarefvand;Mohammad Fatehi, Marji;Shahin, Fattahi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.743-765
    • /
    • 2022
  • Near-surface excavations may cause the tilting and destruction of the adjacent superstructures in big cities. The stability of a huge excavation and its nearby superstructures was studied in this paper. Some test instruments monitored the deformation and loads at the designed location. Then the numerical models of the excavation were made in FLAC3D (a three-dimensional finite difference code) and Plaxis-3D (a three-dimensional finite element code). The effects of different supporting and reinforcement tools such as nails, piles, and shotcretes on the stability and bearing capacity of the foundation were analyzed through different numerical models. The numerically approximated results were compared with the corresponding in-field monitored results and reasonable compatibility was obtained. It was concluded that the displacement in excavation and the settlement of the nearby superstructure increases gradually as the depth of excavation rises. The effects of support and reinforcements were also observed and modeled in this study. The settlement of the structure gradually decreased as the supports were installed. These analyses showed that the pile significantly increased the bearing capacity and decreased the settlement of the superstructure. As a whole, the monitoring and numerical simulation results were in good consistency with one another in this practically important project.

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis (수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.468-479
    • /
    • 2019
  • It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

A Numerical Study on the Step 0 Benchmark Test in Task C of DECOVALEX-2023: Simulation for Thermo-Hydro-Mechanical Coupled Behavior by Using OGS-FLAC (DECOVALEX-2023 Task C 내 Step 0 벤치마크 수치해석 연구: OGS-FLAC을 활용한 열-수리-역학 복합거동 수치해석)

  • Kim, Taehyun;Park, Chan-Hee;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.610-622
    • /
    • 2021
  • The DECOVALEX project is one of the representative international cooperative projects to enhance the understanding of the complex Thermo-Hydro-Mechanical-Chemical(THMC) coupled behavior in the high-level radioactive waste disposal system based on the numerical simulation. DECOVALEX-2023 is the current phase consisting of 7 tasks, and Task C aims to model the THM coupled behavior in the disposal system based on the Full-scale Emplacement (FE) experiment at the Mont-Terri underground rock laboratory. This study performs the numerical simulation based on the OGS-FLAC developed for the current study. In the numerical model, we emplaced the heater with constant power horizontally based on the FE experiment and monitored the pressure development, temperature increase, and mechanical deformation at the specific monitoring points. We monitored the capillary pressure as the primary effect inducing the flow in the buffer system, and thermal stress and pressurization were dominant in the surrounding rocks' area. The results will also be compared and validated with the other participating groups and the experimental data further.

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.