• 제목/요약/키워드: FK506-binding protein 5 (FKBP5)

검색결과 1건 처리시간 0.016초

Bta-miR-365-3p-targeted FK506-binding protein 5 participates in the AMPK/mTOR signaling pathway in the regulation of preadipocyte differentiation in cattle

  • Mengdi Chen;Congcong Zhang;Zewen Wu;Siwei Guo;Wenfa Lv;Jixuan Song;Beibei Hao;Jinhui Bai;Xinxin Zhang;Hongyan Xu;Guangjun Xia
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1156-1167
    • /
    • 2024
  • Objective: MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood. Methods: We identified bta-miR-365-3p, which specifically targets the 3' untranslated region (3'UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis. Results: In this study, we found that the overexpression of bta-miR-365-3p significantly decreased the lipid accumulation and triglyceride content in the adipocytes. Compared to inhibiting bta-miR-36 5-3p group, overexpression of bta-miR-365-3p can inhibit the expression of adipocyte differentiation-related genes C/EBPα and PPARγ. The dual-luciferase reporter system further validated the targeting relationship between bta-miR-365-3p and FKBP5. FKBP5 mRNA and protein expression were detected by quantitative real-time polymerase chain reaction and Western blot. Overexpression of bta-miR-365-3p significantly down-regulated FKBP5 expression, while inhibition of bta-miR-365-3p showed the opposite, indicating that bta-miR-365-3p negatively regulates FKBP5. Adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway is closely related to the regulation of cell growth and is involved in the development of bovine adipocytes. In this study, overexpression of bta-miR-365-3p significantly inhibited mRNA and protein expression of AMPK, mTOR, and SREBP1 genes, while the inhibition of bta-miR-365-3p expression was contrary to these results. Overexpression of FKBP5 significantly upregulated AMPK, mTOR, and SREBP1 gene expression, while inhibition of FKBP5 expression was contrary to the above experimental results. Conclusion: In conclusion, these results indicate that bta-miR-365-3p may be involved in the AMPK/mTOR signaling pathway in regulating Yanbian yellow cattle preadipocytes differentiation by targeting the FKBP5 gene.