• Title/Summary/Keyword: FISH법

Search Result 4, Processing Time 0.015 seconds

Effects of oxygen in the bulk of refuses on nitrification and denitrification -Study on sources of released nitrous oxide using 15N-isotope as a tracer and FISH method- (벌크의 산소농도가 폐기물(廢棄物)의 질산화(窒酸化) 및 탈질(脫窒)에 미치는 영향 -Tracer 로서의 15N 동위원소(同位元素) 및 FISH법(法)을 이용한 아산화질소발생원(亞酸化窒素發生源)의 규명(糾明)-)

  • Hwang, Sun-Jin;Hanaki, Keisuke
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.52-61
    • /
    • 1998
  • Nitrification and denitrification are important processes in the landfill site as they are deeply related with degradation and stabilization of refuse. Also nitrous oxide ($N_2O$) which is released from both nitrification and denitrification is known as greenhouse gas (GHG). The purpose of this study was to clarify the process by which $N_2O$ produced using $^{15}N$ isotope. Nitrate which was labeled to 10.08% with $^{15}KNO_3$ was used and $N_2O$ was analyzed with GC mass. Results was that even also when $O_2$ of bulk was 15%, $N_2O$ was released from denitrification. And as concentrations of $O_2$ increase, sum of $N_2O$ was released from denitrification. And as concentrations of $O_2$ increase, sum of $N_2O$ and $N_2$ was decreased and ratios of $N_2O$ in the reduced gases were increased. FISH technics also adaped to confirm whether which of nitrifiers existed in the substrates. When NEU was used of which the target was ammonia oxidizing bacteria, nitrifier was not detected at all. So it was confirmed that during the reaction denitrification was dominant process. Total bacteria distributions which were detected by EUB probe explained that as $O_2$ increase the number of bacteria also increase, but between the 10-15% of $O_2$ there was no any differences.

  • PDF

Succession of Bacterial Populations in Cattle Manure Compost as Determined by Fluorescent In Situ Hybridization (우분 퇴비화에서의 Fluorescent In Situ Hybridization법에 의한 세균군집의 천이)

  • Lee, Young-Ok;Jo, Ik-Hwan;Kim, Kil-Woong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.146-153
    • /
    • 2000
  • To elucidate succession of bacterial populations, especially nitrifying bacteria during the composting of cattle manure with apple pomace, fluorescent in situ hybridization(FISH) using rRNA targeted oligonucleotide probes were applied. The density of ammonia-oxidizing bacteria was ranged from $3,3{\times}10^6cells/g$ dw to $13,4{\times}10^6cells/g$ dw with the peak value after 26 composting days whereas that of nitrite-oxidizing bacteria varied between $6.0{\times}10^6cells/g$ dw and $17.2{\times}10^6cells/g$ dw with the peak value after 7 composting days. And the tendency that the numbers of nitrite-oxidizing bacteria were higher than those of ammonia-oxidizing bacteria, and the peak-time of their densities were the same as that of data determined by the ratio of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria to eubacteria. The peak of ammonia-oxidizing bacteria followed the peak of nitrite-oxidizing bacteria, at the late phase of composting process could be probably caused by the depletion of volatile ammonia of composting materials. Besides these results indicate that FISH method is a useful tool for detection of slow growing nitrifying bacteria.

  • PDF

Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors (혐기-무산소-호기 반응조내 질화세균군의 변화)

  • Park, Jong-Woong;Lee, Young-Ok;Go, Jun-Heok;Ra, Won-Sik;Lim, Uk-Min;Park, Ji-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.138-144
    • /
    • 2005
  • This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.

Evaluation of Field Application for the Developed Retrofitting Process and Analysis of Bacterial Community Structure in Pilot Plant (하수처리장 Retrofit 공정의 현장적용성 평가 및 세균 군집 분포 연구)

  • Kim, Mee-Kyung;Hong, Jun-Hyeok;Kim, Youn-Kwon;Ahn, Tae-Seok;Shin, Eung-Bai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.240-248
    • /
    • 2006
  • In this study, a retrofitting BNR process that was modified for the economical applicability was proposed and evaluated in the pilot plant($50m^3/d$). At the same time the bacterial community structure was investigated in the pilot plant by using FISH(fluorescent in situ hybridization) method. Economically 16% of the initial construction cost for the proposed process(introduction of a biological nutrient removal process of $60,000m^3/d$ scale basis) was reduced due to the absence of a bioreactor. Water treatment efficiencies and maintenance facilities of the modified process were satisfied with the strengthened discharge permits in Korea throughout a long term pilot plant operating including a winter season. Bacterial populations in the pilot plant and in the control plant(A2/O process, B SIP(Sewage Treatment Plant)) were remained uniformly during the test period, but bacterial structure in the bioreactor was changed drastically. Proportions of ${\beta}$-proteobacteria group including soil bacteria which play a important role in wastewater treatment increased $25{\sim}607%$ in population.