• Title/Summary/Keyword: FIR-emissivity

Search Result 9, Processing Time 0.021 seconds

Far Infra Red Emissivity of Five Korean Wood Species (한국산 5개 수종의 원적외선 방사율)

  • Lee, Hwa Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.17-20
    • /
    • 2005
  • This research was carried out to examine the FIR (far-infrared rays) emissivity and emission power of five Korean wood species for proving wood as an amenity material. Wood turned out excellent as FIR material with 90~91% emissivity in the range of $5{\sim}20{\mu}m$ at $40^{\circ}C$. No difference was identified in the FIR emissivity and emission power between hardwood and softwood, diffuse porous wood and ring porous wood, and high-density wood and low-density wood respectively.

Far Infrared Emissivity of Wood Material - Comparing the Three Heat Transfer Modes of Wood Box and Aluminum Box

  • Lee, Hwa-Hyoung;Bender, Donald A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.440-450
    • /
    • 2009
  • In case of wood flooring, the high emissivity would be one of the most important properties especially as the cover material of underfloor heating system. The FIR (Far Infrared) materials such as wood emit FIR energy by heating, which has been used as the medical therapy such as dry sauna. This research investigated the emissivity and the emission power of wood composites by comparing the amount of the three heat transfer modes transferred by infrared radiation which came from the increased temperature of the bottom board of the plywood box by the heater. The results showed the value of radiation mode was the highest mode for the plywood box, and the convection mode was the main mode for the aluminum box. The rate of convection was 81.8% in the aluminum box and 48.2% in the plywood box, respectively. In case of the rate of radiation, the aluminum box showed only 15.4% and the plywood box showed 51%. The emissivity and the emission power of birch plywood showed the same values as those of wood. The amount of energy required for the temperature rising of water within vial in the aluminum box and in the plywood box were 3.32 kJ and 6.70 kJ respectively, which showed that the vial temperature of the plywood box was two times higher than that of the aluminum box.

Dyeing Characteristics of Fermented Caesalpinia Sappan L. Wood Extract with Chitosan-Acetic Acid Solution and Illite Powder (발효 소목 추출물의 키토산초산 용액과 일라이트 분말에 의한 염색 특성)

  • Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.268-275
    • /
    • 2019
  • In this study, silk fabrics was dyed with sappan wood extracts fermented for 5 and 15 days, respectively, and then the dyeability, durability and the functionality of the dyed silk were investigated. Before dyeing, the silk was pretreated with chitosan-acetic acid solution or chitosan acetic acid and illite blend solution. Thereafter, UV-Visible transmittance, color, fastness, antimicrobial activity, and the FIR emissivity were analyzed. As a result, the K/S value was higher in the samples that were not pre-treated or fermented. Regardless of fermentation, the lightfastness was not significantly different. The color fastness to washing was slightly better when the samples were pretreated with chitosan-acetic acid and illite, and then dyed with extracts fermented 5 days. In addition, all samples showed high antimicrobial activity of 99.9%, regardless of the fermentation. Far-infrared emissivity was confirmed to be slightly increased by the illite and chitosan-acetic acid solution treatment compared to the untreated sample.

A Fundamental Physical Properties of Wood with Charcoal and Loess (목탄과 황토함유 목질소재의 기초물성)

  • Lee, Wun-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • This research was carried out to examine the FIR (far-infrared rays) emissivity and emission power of five types of flooring board by the mixing ratio of charcoal and loess, and the physical property of five types of injected flooring board by the amount of mixture. Type D was appeared the most high value of FIR emissivity and emission power. But there was a little difference among the five types of flooring board values. In physical properties, control type flooring board and injected flooring board showed a similar tendency. Among the domestic trees, all of hard wood seems to be used to surface wood for strong hardness flooring board. But a coniferous tree was not.

  • PDF

Emission of Far-infrared Ray in Packaging Paper

  • Lee, Ji-Young;Kim, Chul-Hwan;Jung, Ho-Gyeong;Shin, Tae-Gi;Seo, Jeong-Min;Lee, Young-Rok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.47-52
    • /
    • 2008
  • The far-infrared ray (FIR) has been applied to various fields such as medical therapy, kitchen utensils, bath supplies, and so on. The FIR-emitting agent was used to make functional paperboards to have freshness-maintaining ability. The FIR-emitting agent was diluted with different concentrations at 0.5% starch solution, and the FIR-emitting solutions were coated on paperboards, i.e., liner. The more the concentration of the FIR radiating agent increased at 0.5% cationic starch solution, the higher FIR emissivity and emission power of paperboards increased. The corrugated boxes made of paperboards coated by the FIR-radiating agents at over 5% dilution concentration endowed mandarin oranges in the boxes with greater antimicrobial activity than those in boxes made of paperboards coated by the agent at below 5% concentration. In addition, it was ascertained that treatment of the FIR agents rarely affected strength properties of paperboards.

Inverse Estimation of Convective Heat Transfer Coefficient, Emissivity and Flame Heat Flux on the Surface (표면의 대류열전달계수, 방사율 및 화염 열유속 역해석 연구)

  • Yoon, Kyung-Beom;Park, Won-Hee
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.15-20
    • /
    • 2013
  • The convective heat transfer coefficient, emissivity, and flame heat flux on the surface of Duglas fir are estimated by using repulsive particle swarm optimization. The surface temperature, mass loss rate, and ignition time are measured for various incident heat fluxes from a cone heater of the cone calorimeter. The calculated surface temperatures obtained by using the optimized convective heat transfer coefficient, emissivity and flame heat flux on the surface in this study match well with those obtained from the test. The maximum error between the predicted and measured surface temperatures for the three different external heat fluxes is within 2% showing reasonable agreements. The methodology proposed in this study can be used to obtain various values related to heat transfer on a flaming surface that are difficult to measure in experiments.

Environment Corresponding Package by Quantitative Mixing System with Functional Inorganic Material and Polyolefin Resin (기능성 무기물과 폴리올레핀계 수지의 정량적 혼합시스템에 의한 환경대응형 포장소재 개발)

  • Kim, Hi-Sam;Lim, Hyun-Ju;Park, Young-Mi
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • A lot of research has been made over the recent decade to develop testing packages with antimicrobial properties to improve food safety. In this study, a new method, experimental device and technology for environmental corresponding packages of polypropylene (PP) film has been developed to provide effective temperature buffering during the transport/long-term storage of grains or foodstuffs from the supplier to the market. This quantitatively optimized mixing system enabled to produce PP films with the 700$\sim$1,400d (width;1.5$\sim$3mm, thickness;0.01$\sim$0.5mm). In the whole mixing systems, the finely-granulated inorganic illite and PP virgin chip for master batch (M/B) chip was calculated by digital measurement methods, and then the M/B chip for PP film was adapted through a air jet and PP grinding method. The prepared PP film was characterized with tensile strength and elongation, far infrared radiation (FIR) emissivity, antimicrobial activity and deodorization properties. The results revealed that the two differently grain-sized illite could be show homogeneously dispersed on PP chip surface, and as the increasing of illite content, the FIR emissivity and the anion emission rate of film was increasingly improved. In both of 325 and 1,500 mesh-sized illite contained PP chip, of course the antimicrobial activity was good. But the ultimate deodorization rate for ammonia gas of PP film were found to be approximately the same.

Far-Infrared Emission Characteristics of Germanium Included Fabrics for Emotional Garment (게르마늄 함유 감성의류용 직물의 원적외선 방출 특성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.13 no.4
    • /
    • pp.687-692
    • /
    • 2010
  • This paper surveys emission characteristics of Far-infrared of the fabrics fabricated with germanium imbedded sheath-core conjugate composite filaments. For this purpose, master batch chip was prepared with PET semi-dull chip and nano sized germanium particles and sheath-core type conjugate composite filament was spun using this master batch chip and polyester semi dull. The emission power and emissivity of the germanium imbedded fabrics were measured and investigated using FT-IR spectrophotometer by KICM- FIR 1005 measurement method. In addition, the fabric mechanical properties were measured and discussed with the effects of the optimum texturing process conditions and fabric structural design conditions. The sheath/core type PET composite germanium imbedded filaments were manufactured by the optimum spinning condition, its tenacity and breaking strain showed the same level as the regular PET filament. The tenacity and breaking strain of the DTY showed good physical properties and no problem in the weaving process. Then, wet and dry shrinkages showed higher values than those of regular PET filament. The emission power of the germanium imbedded fabric was $3.53{\times}10^2W/m^2$ at the $5-20{\mu}m$ wave length range, and emissivity was 0.874. The fabric hand of germanium imbedded fabrics was inhanced by the optimum texturing process and fabric structural design with improved mechanical properties such as fabric bending and compressional properties.

  • PDF

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.