• 제목/요약/키워드: FIGARCH Model

검색결과 14건 처리시간 0.021초

호주 선물시장의 장기기억 변동성 예측 (Forecasting Long-Memory Volatility of the Australian Futures Market)

  • 강상훈;윤성민
    • 국제지역연구
    • /
    • 제14권2호
    • /
    • pp.25-40
    • /
    • 2010
  • 변동성을 정확하게 예측하는 것은 금융시장의 변동성 연구에 있어 특히 포트폴리오선택, 옵션가격결정, 위험관리와 관련하여 매우 흥미로운 연구주제이다. 왜냐하면 변동성은 시장의 위험을 의미하기 때문이다. 이 논문은 세 가지 변동성 모형(GARCH, IGARCH, FIGARCH)을 이용하여 호주 주가지수선물시장의 일일후 변동성을 예측하고 각 모형의 예측력을 비교 분석하였다.특히 호주 주가지수선물 변동성에 존재하는 장기기억 특성에 초점을 맞추고 실증분석하였다. 실증분석 결과 FIGARCH 모형이 GARCH 모형이나 IGARCH 모형보다 호주 주가지수선물시장의 장기기억 특성을 더 잘 포착한다는 것을 발견하였다. 또 세 모형 중 FIGARCH 모형을 이용할 경우 일일후 변동성 예측의 성과가 가장 우수하다는 것도 발견하였다. 이는 호주 주가지수선물 변동성에 장기기억이 존재하는 것을 의미하고, 변동성의 특징을 명시적으로 고려하는 FIGARCH 모형이 장기기억을 고려하지 않는 다른 모형들보다 예측성과 측면에서 더 우수하다는 것을 의미한다. 따라서 호주 주가지수선물시장의 장기기억 변동성을 예측하는 데는 FIGARCH 모형이 가장 유용한 것으로 나타났다.

A Fractional Integration Analysis on Daily FX Implied Volatility: Long Memory Feature and Structural Changes

  • Han, Young-Wook
    • 아태비즈니스연구
    • /
    • 제13권2호
    • /
    • pp.23-37
    • /
    • 2022
  • Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series

Block Trading Based Volatility Forecasting: An Application of VACD-FIGARCH Model

  • TU, Teng-Tsai;LIAO, Chih-Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권4호
    • /
    • pp.59-70
    • /
    • 2020
  • The purpose of this study is to construct the ACD model for the block trading volume duration. The ACD model based on the block trading volume duration is referred to as Volume ACD (VACD) in this study. By integrating with GARCH-type models, the VACD based GARCH type models, which include VACD-GARCH, VACD-IGARCH and VACD-FIGARCH models, are set up. This study selects Chunghwa Telecom (CHT) Inc., offering the America Depository Receipt (ADR) in NYSE, to investigate the block trading volume duration in Taiwanese equity market. The empirical results indicate that the long memory in volume duration series increases dependence at level of volatility clustering by VACD (2,1)-FIGARCH (3,d,1) model. Moreover, the VACD (2,1)-IGARCH (1,1) exhibits relatively better performance of prediction on capturing block trading volume duration. This volatility model is more appropriate in this study to portray the change of the CHT Inc. prices and provides more information about the volatility process for investment strategy, which can be a reference indicator of financial asset pricing, hedging strategy and risk management.

Quantitative Comparisons on the Intrinsic Features of Foreign Exchange Rates Between the 1920s and the 2010s: Case of the USD-GBP Exchange Rate

  • Han, Young Wook
    • East Asian Economic Review
    • /
    • 제20권3호
    • /
    • pp.365-390
    • /
    • 2016
  • This paper quantitatively compares the intrinsic features of the daily USD-GBP exchange rates in two different periods, the 1920s and the 2010s, under the same freely floating exchange rate system. Even though the foreign exchange markets in the 1920s seem to be much less organized and developed than in the 2010s, this paper finds that both the long memory volatility property and the structural break appear to be the common intrigue features of the exchange rates in the two periods by using the FIGARCH model. In particular, the long memory volatility properties in the two periods are found to be upward biased and overstated because of the structural breaks in the exchange markets. Thus this paper applies the Adaptive-FIGARCH model to consider the long memory volatility property and the structural breaks jointly. The main finding is that the structural breaks in the exchange markets affect the long memory volatility property significantly in the two periods but the degree of the long memory volatility property in the 1920s is reduced more remarkably than in the 2010s after the structural breaks are accounted for; thus implying that the structural breaks in the foreign exchange markets in the 1920s seem to be more significant.

원유시장 분석을 위한 VaR 모형 (Value-at-Risk Models in Crude Oil Markets)

  • 강상훈;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제16권4호
    • /
    • pp.947-978
    • /
    • 2007
  • 본 연구에서는 원유시장의 변동성 분석에 적용될 수 있는 VaR(Value-at-Risk) 접근법을 고찰한다. 그리고 다양한 VaR 모형들(RiskMetrics, GARCH, IGARCH와 FIGARCH 모형)의 성과를 정규분포와 치우친 Student-t 분포 가정 하에서 평가한다. Brent 및 Dubai 시장의 일별가격 자료를 이용한 실증분석 결과에 따르면, FIGARCH 모형이 GARCH 모형이나 IGARCH 모형보다 원유시장의 변동성에 내재되어 있는 장기기억 특성을 잘 반영한다는 점에서 더 우월한 것으로 나타났다. 이러한 사실은 원유시장 수익률의 변동성에는 장기기억이 존재한다는 것을 의미한다. 그리고 VaR 분석 결과, 치우친 Student-t 분포 가정 하에서 추정되는 FIGARCH 모형이 롱 포지션과 숏 포지션 모두에서 정규분포 가정 하에서 추정되는 다른 변동성 모형들보다 원유시장에서의 투자 위험을 더 정확하게 예측하는 것으로 나타났다. 이러한 사실은 치우친 Student-t 분포 가정이 원유시장 수익률 분포에 내재되어 있는 비정상적 왜도와 첨도를 모형화하는데 더 적합하다는 것을 의미한다. 이와 같은 발견은 원유시장 구매자 및 판매자들이 원유가격의 움직임을 올바르게 측정하고 VaR을 정확하게 추정하는데 도움을 줄 것이다.

  • PDF

국제주식시장의 정보전이효과에 관한 연구 : 중국, 대만, 홍콩을 중심으로 (Information Spillover Effects among the Stock Markets of China, Taiwan and Hongkon)

  • 윤성민;소천;강상훈
    • 국제지역연구
    • /
    • 제14권3호
    • /
    • pp.62-84
    • /
    • 2010
  • 본 논문은 중국, 홍콩, 대만 주식시장들 사이의 동태적 상호의존성을 연구한다. 이를 위하여 아시아 금융위기가 그러한 상호의존성의 구조전환점인지를 검토하고, 이를 아시아 금융위기를 기준으로 세 가지 분석기간을 설정하여 수익률과 변동성의 정보전이효과를 분석한다. 전체기간을 대상으로 한 실증분석 결과 세 시장 수익률 평균과 비대칭 변동성 사이에 정보전이효과가 유의하게 존재한다는 증거가 발견되었다. 이는 세 시장 간에 정보전이와 비대칭적 변동성이 존재한다는 것을 암시한다. 또 수익률 평균과 비대칭 변동성 사이에 존재하는 정보전이효과의 크기가 금융위기 이후 증가한 것으로 나타났다. 이러한 사실은 아시아 금융위기 이후 중국, 홍콩, 대만 주식시장의 통합이 더 강화된 것을 의미한다. 특히 변동성 정보전이효과의 비대칭성이 금융위기 이후 더 심화된 것으로 나타났다. 이러한 사실은 긍정적 충격보다 부정적 충격이 대중국 주식시장 변동성에 미치는 영향이 금융위기 이후 더 심화된 것을 의미한다. 결론적으로 아시아 금융위기가 중국, 홍콩, 대만 주식시장의 정보전이와 비대칭성을 심화시킨 것으로 판단된다.

장기기억 변동성 모형을 이용한 KOSPI 수익률의 Value-at-Risk의 추정 (Value-at-Risk Estimation of the KOSPI Returns by Employing Long-Memory Volatility Models)

  • 오정준;김성곤
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.163-185
    • /
    • 2013
  • 본 논문에서는 장기기억 변동성 모형의 필요성을 Value-at-Risk(VaR) 추정의 관점에서 알아본다. 이를 위해, KOSPI 수익률의 VaR을 FIGARCH, FIEGACH와 같은 장기기억 변동성 모형과 GARCH, EGARCH와 같은 단기기억 변동성 모형을 적용하여 각각 추정한 후, 각 변동성 모형에 따른 추정의 적절성을 사후검증을 통하여 비교해 본다. 사후검증을 통해, KOSPI 수익률 과정이 장기기억 속성을 가짐을 확인할 수 있으며, 적절한 VaR의 추정을 위해서는 장기기억 변동성 모형을 적용하는 것이 필요함을 알 수 있다.

Effects of Financial Crises on the Long Memory Volatility Dependency of Foreign Exchange Rates: the Asian Crisis vs. the Global Crisis

  • Han, Young Wook
    • East Asian Economic Review
    • /
    • 제18권1호
    • /
    • pp.3-27
    • /
    • 2014
  • This paper examines the effects of financial crises on the long memory volatility dependency of daily exchange returns focusing on the Asian crisis in 97-98 and the Global crisis in 08-09. By using the daily KRW-USD and JPY-USD exchange rates which have different trading regions and volumes, this paper first applies both the parametric FIGARCH model and the semi-parametric Local Whittle method to estimate the long memory volatility dependency of the daily returns and the temporally aggregated returns of the two exchange rates. Then it compares the effects of the two financial crises on the long memory volatility dependency of the daily returns. The estimation results reflect that the long memory volatility dependency of the KRW-USD is generally greater than that of the JPY-USD returns and the long memory dependency of the two returns appears to be invariant to temporal aggregation. And, the two financial crises appear to affect the volatility dynamics of all the returns by inducing greater long memory dependency in the volatility process of the exchange returns, but the degree of the effects of the two crises seems to be different on the exchange rates.

Can the Skewed Student-t Distribution Assumption Provide Accurate Estimates of Value-at-Risk?

  • Kang, Sang-Hoon;Yoon, Seong-Min
    • 재무관리연구
    • /
    • 제24권3호
    • /
    • pp.153-186
    • /
    • 2007
  • It is well known that the distributional properties of financial asset returns exhibit fatter-tails and skewer-mean than the assumption of normal distribution. The correct assumption of return distribution might improve the estimated performance of the Value-at-Risk(VaR) models in financial markets. In this paper, we estimate and compare the VaR performance using the RiskMetrics, GARCH and FIGARCH models based on the normal and skewed-Student-t distributions in two daily returns of the Korean Composite Stock Index(KOSPI) and Korean Won-US Dollar(KRW-USD) exchange rate. We also perform the expected shortfall to assess the size of expected loss in terms of the estimation of the empirical failure rate. From the results of empirical VaR analysis, it is found that the presence of long memory in the volatility of sample returns is not an important in estimating an accurate VaR performance. However, it is more important to consider a model with skewed-Student-t distribution innovation in determining better VaR. In short, the appropriate assumption of return distribution provides more accurate VaR models for the portfolio managers and investors.

  • PDF