• Title/Summary/Keyword: FIBER ORIENTATION TENSOR

Search Result 9, Processing Time 0.021 seconds

Fiber orientation in the processing of polymer composites

  • Chung, Du-Hwan;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.175-188
    • /
    • 2002
  • We review the modeling and simulation of fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Various closure approximation models to express higher order tensor in terms of Bower order tensors are reviewed. Rheology of fiber suspensions, multiple fiber-fiber interaction and numerical technique for the prediction of fiber orientation are also considered for concentrated situations.

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF

Fiber Orientation in Injection-Molded Short Fiber Composites with a Confocal Laser Scanning Microscope and Numerical Simulation (공초점 레이저 주사 현미경을 이용한 단섬유 복합재료 사출 성형물 내의 섬유 배열 측정 및 수치모사)

  • Lee, Kwang-Seok;Le, Seok-Won;Youn, Jae-Ryoun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.201-204
    • /
    • 2001
  • A Confocal Laser Scanning Microscope (CLSM) is applied to determine three-dimensional fiber orientation states in injection-molded short fiber composites. Since the CLSM optically sections the composites, more than two planes either on or below the surface of composites can be obtained. Therefore, three dimensional fiber orientation states are determined without destruction. To predict the orientation states, velocity and temperature fields are calculated by using a hybrid FEM/FDM method. The change of orientation state during packing stage is also considered by employing a compressible Hele-Shaw model. The predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from other effects, which are not considered in the numerical analysis.

  • PDF

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.

Software Development for the Visualization of the Orientation of Brain Fiber Tracts in Diffusion Tensor Imaging Using a 24 bit Color Coding

  • Jung-Su Oh;In Chan Song;Ik-Hwan Cho;Jong-Hyo Kim;Kee Hyun Chang;Kwang-Suk Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • Interests in human brain functionality and its connectivity have much frown up. DTI (Diffusion tensor imaging) has been known as a non-invasive MR) technique capable of providing information on water diffusion in tissues and the organization of white matter tract. Thus. It can provide us the information on the direction of brain fiber tract and the connectivity among many important cortical regions which can not be examined by other anatomical or functional MRI techniques. In this study. was used the 24 bit color coding scheme on the IDL platform in the windows environment to visualize the orientation of major fiber tracts of brain such as main association, projection, commissural fibers and corticospinal tracts. We additionally implemented a color coding scheme for each directional component and FA (fractional anisotropy), and used various color tables for them to be visualized more definitely. Consequently we implemented a fancy and basic technique to visualize the directional information of fiber tracts efficiently and we confirmed the feasibility of the 24 bit color coding scheme in DTI by visualizing main fiber tracts.

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Improved Closure Approximation for Numerical Simulation of Fiber Orientation in Fiber-Reinforced Composite (단섬유 보강 복합재료에서의 섬유배향의 수치모사를 위한 개선된 근사모델)

  • D.H. Chung;T.H. Kwon
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.202-216
    • /
    • 1998
  • Improved version of previous 'Orthotropic' closure approximation, termed 'ORW' has been numerically developed using new homogeneous flow data. Previous 'Orthotropic' closure approximation, i.e., ORF or ORL showed non-physical oscillation for interaction coefficient $C_1$<0.001 at simple shear flow. It also shows non-physcial oscillation and under-prediction compared with 'Distribution Function Calculation' at non-homogeneous flow of center-gated disk. These phenomena are mainly due to the flow data of 'Distribution Function Calculation' which were used for least-square optimization. ORW obtained by fitting flow data of low interaction coefficient does not show non-physical oscillation and results in reasonably good behaviors at non-homogeneous flows as well as homogeneous flows. Fitting function forms have not been found to improve overall behaviors. It has been found that considering all the eigenvalues of orientation tensor (including the third eigenvalues) might end up with a better closure approximation than just considering the first and second eigenvalues. It is, however, very important and yet difficult to select appropriate function forms of eigenvalues. Numerical simulation including coupling and in-plane velocity gradient effects were performed for injection mold filing process with a film-gated strip and a center-gated disk using ORW and various other closure approximations for comparisons. Although ORW is in excellent agreement with 'Distribution Function Calculation', the predicted results seem to have consistent error in comparison with experimental data. The diffusivity term with constant interaction coefficient might have to be further investigated in order to accurately describe orientation states.

  • PDF

Usefulness of DTI-based three dimensional corticospinal tractography in children with hemiplegic cerebral palsy (편마비를 가진 뇌성마비 환아에서 확산 텐서강조영상을 이용한 3차원 피질척수로 영상의 유용성)

  • Yeo, Ji Hyun;Son, Su Min;Lee, Eun Sil;Moon, Han Ku
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • Purpose : Magnetic resonance diffusion tensor imaging-based three-dimensional fiber tractography (DTI-FT) is a new method which demonstrates the orientation and integrity of white matter fibers in vivo. However, clinical application on children with cerebral palsy is still under investigation. We present various abnormal patterns of DTI-FT findings and accordance rate with clinical findings in children with hemiplegic cerebral palsy, to recognize the use fulness of DTI-FT. Methods : The thirteen children with hemiplegic cerebral palsy evaluated at Yeungnam University hospital from March, 2003 to August, 2007 were enrolled in this study and underwent magnetic resonance DTI-FT of the corticospinal tracts. Two regions of interest (ROI) were applied and the termination criteria were fractional anisotropy ${\geq}0.3$, angle ${\leq}70^{\circ}$. Results : The patterns and distribution of abnormal DTI-based corticospinal tractographic findings were interruption(10 cases, 76.9%), reduction of fiber volume (8 cases, 61.5%), agenesis of corticospinal tract (3 cases, 23.1%), transcallosal fiber (2 cases, 15.4%) and, aberrant corticospinal tracts (4 cases, 30.8%). Abnormal DTI-based corticospinal tractographic findings were in accordance with the clinical findings of cerebral palsy in 84.6% of the enrolled patients. Conclusion : Our results suggest that DTI-FT would be a use ful modality in the assessment of the corticospinal tract abnormalities in children with hemiplegic cerebral palsy.