• Title/Summary/Keyword: FIB simulation

Search Result 23, Processing Time 0.028 seconds

Silicon Nano Patterning Using Focused ion Beam: Simulation and Fabrication (집속이온빔을 이용한 실리콘 나노 패터닝: 시뮬레이션과 가공)

  • Han J.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.489-490
    • /
    • 2006
  • To establish fabrication techniques for nano structure understanding of focused ion beam (FIB) milling process is required. In this study the mathematical model containing the factors related to FIB milling is developed to acquire the optimal fabrication condition. Then, the model is verified by comparison with various nano pattern fabricated in actual FIB system. Consequently, it is demonstrated that the nano patterns with the smallest pitch can be fabricated using developed FIB milling model.

  • PDF

'AMADEUS' Software for ion Beam Nano Patterning and Characteristics of Nano Fabrication ('아마데우스' 이온빔 나노 패터닝 소프트웨어와 나노 가공 특성)

  • Kim H.B.;Hobler G.;Lugstein A.;Bertagonolli E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.322-325
    • /
    • 2005
  • The shrinking critical dimensions of modern technology place a heavy requirement on optimizing feature shapes at the micro- and nano scale. In addition, the use of ion beams in the nano-scale world is greatly increased by technology development. Especially, Focused ion Beam (FIB) has a great potential to fabricate the device in nano-scale. Nevertheless, FIB has several limitations, surface swelling in low ion dose regime, precipitation of incident ions, and the re-deposition effect due to the sputtered atoms. In recent years, many approaches and research results show that the re-deposition effect is the most outstanding effect to overcome or reduce in fabrication of micro and nano devices. A 2D string based simulation software AMADEUS-2D $(\underline{A}dvanced\;\underline{M}odeling\;and\;\underline{D}esign\;\underline{E}nvironment\;for\;\underline{S}putter\;Processes)$ for ion milling and FIB direct fabrication has been developed. It is capable of simulating ion beam sputtering and re-deposition. In this paper, the 2D FIB simulation is demonstrated and the characteristics of ion beam induced direct fabrication is analyzed according to various parameters. Several examples, single pixel, multi scan box region, and re-deposited sidewall formation, are given.

  • PDF

EUVL Mask Defect Isolation and Repair using Focused Ion Beam (Focused Ion Beam을 이용한 EUVL Mask Defect Isolation 및 Repair)

  • 김석구;백운규;박재근
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.5-9
    • /
    • 2004
  • Microcircuit fabrication requires precise control of impurities in tiny regions of the silicon. These regions must be interconnected to create components and VLSI circuits. The patterns to define such regions are created by lithographic processes. In order to image features smaller than 70 nm, it is necessary to employ non-optical technology (or next generation lithography: NGL). One such NGL is extreme ultra-violet lithography (EUVL). EUVL transmits the pattern on the wafer surface after reflecting ultra-violet through mask pattern. If particles exist on the blank mask, it can't transmit the accurate pattern on the wafer and decrease the reflectivity. It is important to care the blank mask. We removed the particles on the wafer using focused ion beam (FIB). During removal, FIB beam caused damage the multi layer mask and it decreased the reflectivity. The relationship between particle removal and reflectivity is examined: i) transmission electron microscope (TEM) observation after particle removal, ii) reflectivity simulation. It is found that the image mode of FIB is more effective for particle removal than spot and bar mode.

  • PDF

A Study on the Shape of the Pattern Milled Using FIB (집속이온빔 연마에 의한 패턴의 형태에 관한 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.679-685
    • /
    • 2014
  • For the measurements of surface shape milled using FIB (focused ion beam), the silicon bulk, $Si_3N_4/Si$, and Al/Si samples are used and observed the shapes milled from different sputtering rates, incident angles of $Ga^+$ ions bombardment, beam current, and target material. These conditions also can be influenced the sputtering rate, raster image, and milled shape. The fundamental ion-solid interactions of FIB milling are discussed and explained using TRIM programs (SRIM, TC, and T-dyn). The damaged layers caused by bombarding of $Ga^+$ ions were observed on the surface of target materials. The simulated results were shown a little bit deviation with the experimental data due to relatively small sputtering rate on the sample surface. The simulation results showed about 10.6% tolerance from the measured data at 200 pA. On the other hand, the improved analytical model of damaged layer was matched well with experimental XTEM (cross-sectional transmission electron microscopy) data.

A study on the ion-concentraion distribution using by FIB irradiated on amorphous $Se_{75}Ge_{25}$ Thin film (비정질 $Se_{75}Ge_{25}$ 박막의 $Ga^{+}$ 소스를 사용한 FIB 입사에 따른 이온농도 분포에 관한 연구)

  • 임기주;정홍배;이현용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.193-199
    • /
    • 2000
  • As an energetic focused-ion beam(FIB) is irradiated on an inorganic amorphous thin film a majority of ions without a reflection at surface, is randomly collided with constituent atoms in thin film. but their distribution exhibits generally a systematic form of distribution. In our previous paper we reported the concentration distribution and the transmission per unit depth of Ga$^{+}$ ions penetrated int a-Se$_{75}$ /Ge$_{25}$ thin film using the LSS-based calculation. In this paper these simulated results are compared with those obtained by a conventional profile code(ISC) and a practical SIMS profile. Then the results of LSS-based calculation have only a small difference with those of code and SIMS Especially. in the case of Ga$^{+}$-FIB with an accelerating energy of 15keV. the depth of the maximum ion concentration is coincident with each other in an error range of $\pm$5$\AA$.EX>.

  • PDF

ADAMS Simulation on the Scale Model of the FOOB System (연식주퇴 시스템 축소 모델에 대한 ADAMS 해석)

  • Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Due to the improvement of science technology, the future tank system will have the multi-function for more powerful firing. and the tank, mounted this multi-function, must be lighter to maintain the mobility. Therefore, new brecoil technology would be necessary to reduce the recoil force for lighter platform. The present study covers a FOOB(Fire-Out0-Of-Battery) system that can reduce the recoil force dramatically. The firing sequence of the FOOB system is radically different from that of a conventional system. The gun is latched in out-of-battery position prior to firing. As soon as firing is occurred, the gun is unlatched and accelerated. The forward momentum is imparted to the recoiling parts. This momentum is opposed by the ballistic force imparted by firing and the recoil force and recoil length will be reduced. In this study, the ADAMS simulation has been performed with the scale model of the FIB(Fire-In-Battery) system and the FOOB system. The ADAMS simulation results show that the FOOB system could reduce the operating time and recoil length and the recoil force.

Characteristics of electric field in the liquid metal ion source with a suppressor

  • Cho, Byeong-Seong;Oh, Hyun-Joo;Song, Ki-Baek;Kang, Seung-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.88-88
    • /
    • 2010
  • The liquid metal ion sources(LMIS) in FIB system have many advantages of high current density, high brightness, and low ion energy spread. Most FIB systems use LMIS because the beam spot size of LMIS is smaller than of gas field ionization sources(GFIS). LMIS basically consists of a emitter(needle, anode), a reservoir(gallium) and a extractor(cathode). But several LMIS have new electrode called the suppressor. We investigated characteristics of LMIS with a suppressor. The characteristics of the threshold voltage and current-voltage (I-V) were observed under the varying extracting voltage with floated suppressor voltage, and under the varying suppressor voltages with fixed extractor voltage. We also simulated LMIS with the suppressor through CST(Computer Simulation Technology). We can explain characteristics of LMIS with a suppressor using the electric field.

  • PDF

Uncertainty Analysis of Long-Term Behavior of Reinforced Concrete Members Under Axial Load (축력을 받는 철근콘크리트조 부재 장기거동 예측의 불확실성 분석)

  • Yoo, Jae-Wook;Kim, Seung-Nam;Yu, Eun-Jong;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.343-350
    • /
    • 2014
  • A probabilistic construction stage analysis using the Monte Carlo Simulation was performed to address the effects of uncertainty regarding the material properties, environmental factors, and applied forces. In the previous research, creep and shrinkage were assumed to be completely independent random variables. However, because of the common influencing factors in the material models for the creep and shrinkage estimation, strong correlation between creep and shrinkage can be presumed. In this paper, an Monte Carlo Simulation using CEB-FIB creep and shrinkage equations were performed to actually evaluate the correlation coefficient between two phenomena, and then another Monte Carlo Simulation to evaluate the statistical properties of axial strain affected by partially correlated random variables including the material properties, environmental factors, and applied forces. The results of Monte Carlo Simulation were compared with measured strains of a column on a first story in a 58-story building. Comparison indicated that the variation due to the uncertainty related with the material properties were most severe. And measured strains was within the range of mean+standard deviation.