• Title/Summary/Keyword: FGMs(functionally graded materials)

Search Result 89, Processing Time 0.025 seconds

A Tailored Investigation for $(Ba,Sr)TiO_3$ FGMs

  • Jeon, Jae-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.289-290
    • /
    • 2006
  • [ $SrTiO_3$ ] is usually added as shifters in order to move the $T_C$ of $BaTiO_3$ to lower temperatures because it is well established that the $T_C$ of $BaTiO_3$ decreases linearly with a solid solution of $Sr^{+2}$ in place of $Ba^{+2}$. It is not fully understood yet, however, how $SrTiO_3$ influences on the peak value of the dielectric constant $(\varepsilon_{max})$ at the $T_C$ of $BaTiO_3$. This research reports the effect of $SrTiO_3$ addition on εmax at the $T_C$ of $BaTiO_3$ ceramics. Based on the chemical composition and the grain size dependence of the dielectric property of $BaTiO_3$ ceramics, functionally graded $(Ba,Sr)TiO_3$ composites were designed and fabricated. Multi-layered $(Ba,Sr)TiO_3$ composites with a compositional gradient of $SrTiO_3$ exhibited a low temperature coefficient and high dielectric constant in a wide temperature range.

  • PDF

Material Topology Optimization of FGMs using Homogenization and Linear Interpolation Methods (균질화 및 선형보간법을 이용한 기능경사 내열복합재의 물성분포 최적설계)

  • 조진래;박형종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.495-503
    • /
    • 2001
  • In a functionally graded materials(FGM), two constituent material particles are mixed up according to a specific volume fraction distribution so that its thermoelastic behavior is definitely characterized by such a material composition distribution. Therefore, the designer should determine the most suitable volume fraction distribution in order to design a FGM that optimally meets the desired performance against the given constraints. In this paper, we address a numerical optimization procedure, with employing interior penalty function method(IPFM) and FDM, for optimizing 2D volume fractions of heat-resisting FGMs composed of metal and ceramic. We discretize a FGM domain into finite number of homogenized rectangular cells of single design variable in order for the optimization efficiency. However, after the optimization process, we interpolate the discontinuous volume fraction with globally continuous bilinear function in order to enforce the continuity of volume fraction distributions.

  • PDF

Thermoelastic deformation and stress analysis of a FGM rectangular Plate (경사기능재료 사각 판의 열 탄성 변형과 응력 해석)

  • Kim,Gwi-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.279-298
    • /
    • 2016
  • Present disquisition proposes an analytical solution method for exploring the buckling characteristics of porous magneto-electro-elastic functionally graded (MEE-FG) plates with various boundary conditions for the first time. Magneto electro mechanical properties of FGM plate are supposed to change through the thickness direction of plate. The rule of power-law is modified to consider influence of porosity according to two types of distribution namely even and uneven. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM plate under magneto-electrical field via Hamilton's principle. An analytical solution procedure is exploited to achieve the non-dimensional buckling load of porous FG plate exposed to magneto-electrical field with various boundary condition. A parametric study is led to assess the efficacy of material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage, boundary conditions, aspect ratio and side-to-thickness ratio on the non-dimensional buckling load of the plate made of magneto electro elastic FG materials with porosities. It is concluded that these parameters play remarkable roles on the dynamic behavior of porous MEE-FG plates. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

  • Soliman, Ahmed E.;Eltaher, Mohamed A.;Attia, Mohamed A.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.85-96
    • /
    • 2018
  • This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.