• Title/Summary/Keyword: FGMs(functionally graded materials)

Search Result 89, Processing Time 0.026 seconds

Pull-in instability of electrically actuated poly-SiGe graded micro-beams

  • Jia, Xiao L.;Zhang, Shi M.;Yang, Jie;Kitipornchai, Sritawat
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.215-230
    • /
    • 2013
  • This paper investigates the pull-in instability of functionally graded poly-SiGe micro-beams under the combined electrostatic and intermolecular forces and temperature change. The exponential distribution model and Voigt model are used to analyze the functionally graded materials (FGMs). Principle of virtual work is used to derive the nonlinear governing differential equation which is then solved using differential quadrature method (DQM). A parametric study is conducted to show the significant effects of material composition, geometric nonlinearity, temperature change and intermolecular Casimir force.

Unsteady Temperature Distributions in a Semi-infinite Hollow Circular Cylinder of Functionally Graded Materials

  • Kim, Kui-Seob;NODA, Naotake
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.46-55
    • /
    • 2001
  • A Green's function approach based on the laminate theory is adopted to obtain the unsteady temperature distributions in a semi-infinite hollow circular cylinder made of functionally graded materials (FGMs). The transient heat conduction equation based on the laminate theory is formulated into an eigenvalue problem for each layer by using the eigenfunction expansion theory and the separation of variables. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the unsteady temperature distributions. Numerical calculations are carried out for the semi-infinite hollow circular FGM cylinder subjected to partially heated loads, and the numerical results are shown in figures.

  • PDF

Characterization of elastic modulus and fracture toughness of randomly oriented chopped glass fibers functionally graded materials

  • Sayed Mohammad Hossein Izadi;Mahdi Fakoor;Babak Mirzavand
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2024
  • A cost-effective fabrication method suitable for research purposes is proposed in this study. The elastic modulus of the fabricated functionally graded materials is evaluated and compared using two experimental methods: the three-point bending test and the tensile test, with a focus on the fiber volume fraction of the FGM layers. New methods for computing the elastic modulus are introduced, which are based on Castigliano's theorem and the secant modulus concept, incorporating the non-linear behavior of the material. Additionally, the mode I fracture toughness of the FGM layers is measured accurately using the three-point bending test and finite element analysis, and the influence of varying fiber volume fractions on this parameter is investigated through statistical analysis. Results indicate that while an increase in fiber volume fraction correlates with a rise in elastic modulus, it does not necessarily lead to an enhancement in mode I fracture toughness, highlighting the complex interactions between material composition and mechanical properties.

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

Effect of homogenization models on stress analysis of functionally graded plates

  • Yahia, Sihame Ait;Amar, Lemya Hanifi Hachemi;Belabed, Zakaria;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.527-544
    • /
    • 2018
  • In this paper, the effect of homogenization models on stress analysis is presented for functionally graded plates (FGMs). The derivation of the effective elastic proprieties of the FGMs, which are a combination of both ceramic and metallic phase materials, is of most of importance. The majority of studies in the last decade, the Voigt homogenization model explored to derive the effective elastic proprieties of FGMs at macroscopic-scale in order to study their mechanical responses. In this work, various homogenization models were used to derive the effective elastic proprieties of FGMs. The effect of these models on the stress analysis have also been presented and discussed through a comparative study. So as to show this effect, a refined plate theory is formulated and evaluated, the number of unknowns and governing equations were reduced by dividing the transverse displacement into both bending and shear parts. Based on sinusoidal variation of displacement field trough the thickness, the shear stresses on top and bottom surfaces of plate were vanished and the shear correction factor was avoided. Governing equations of equilibrium were derived from the principle of virtual displacements. Analytical solutions of the stress analysis were obtained for simply supported FGM plates. The obtained results of the displacements and stresses were compared with those predicted by other plate theories available in the literature. This study demonstrates the sensitivity of the obtained results to different homogenization models and that the results generated may vary considerably from one theory to another. Finally, this study offers benchmark results for the multi-scale analysis of functionally graded plates.

Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study

  • AlSaid-Alwan, Hiyam Hazim Saeed;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • In engineering structures, to having the projected structure to serve all the engineering purposes, the theory to be used during the modeling stage is also of great importance. In the present work, an analytical solution of the free vibration of the beam composed of functionally graded materials (FGMs) is presented utilizing different beam theories. The comparison of supposed beam theory for free vibration of functionally graded (FG) beam is examined. For this aim, Euler-Bernoulli, Rayleigh, Shear, and Timoshenko beam theories are employed. The functionally graded material properties are assumed to vary continuously through the thickness direction of the beam with respect to the volume fraction of constituents. The governing equations of free vibration of FG beams are derived in the frameworks of four beam theories. Resulting equations are solved versus simply supported boundary conditions, analytically. To verify the results, comparisons are carried out with the available results. Parametrical studies are performed for discussing the effects of supposed beam theory, the variation of beam characteristics, and FGM properties on the free vibration of beams. In conclusion, it is found that the interaction between FGM properties and the supposed beam theory is of significance in terms of free vibration of the beams and that different beam theories need to be used depending on the characteristics of the beam in question.

Vibration analysis of nonlocal porous nanobeams made of functionally graded material

  • Berghouti, Hana;Adda Bedia, E.A.;Benkhedda, Amina;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.351-364
    • /
    • 2019
  • In this work, dynamic behavior of functionally graded (FG) porous nano-beams is studied based on nonlocal nth-order shear deformation theory which takes into the effect of shear deformation without considering shear correction factors. It has been observed that during the manufacture of "functionally graded materials" (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the dynamic analysis of FG beams taking into account the influence of these imperfections is established. Material characteristics of the FG beam are supposed to be vary continuously within thickness direction according to a "power-law scheme" which is modified to approximate material characteristics for considering the influence of porosities. A comparative study with the known results in the literature confirms the accuracy and efficiency of the current nonlocal nth-order shear deformation theory.

An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities

  • Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.255-265
    • /
    • 2017
  • In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.

Application the mechanism-based strain gradient plasticity theory to model the hot deformation behavior of functionally graded steels

  • Salavati, Hadi;Alizadeh, Yoness;Berto, Filippo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.627-641
    • /
    • 2014
  • Functionally graded steels (FGSs) are a family of functionally graded materials (FGMs) consisting of ferrite (${\alpha}$), austenite (${\gamma}$), bainite (${\beta}$) and martensite (M) phases placed on each other in different configurations and produced via electroslag remelting (ESR). In this research, the flow stress of dual layer austenitic-martensitic functionally graded steels under hot deformation loading has been modeled considering the constitutive equations which describe the continuous effect of temperature and strain rate on the flow stress. The mechanism-based strain gradient plasticity theory is used here to determine the position of each layer considering the relationship between the hardness of the layer and the composite dislocation density profile. Then, the released energy of each layer under a specified loading condition (temperature and strain rate) is related to the dislocation density utilizing the mechanism-based strain gradient plasticity theory. The flow stress of the considered FGS is obtained by using the appropriate coefficients in the constitutive equations of each layer. Finally, the theoretical model is compared with the experimental results measured in the temperature range $1000-1200^{\circ}C$ and strain rate 0.01-1 s-1 and a sound agreement is found.