• 제목/요약/키워드: FGM plates

검색결과 150건 처리시간 0.019초

The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers

  • Arefi, M.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1345-1362
    • /
    • 2015
  • The present paper deals with the free vibration analysis of the functionally graded solid and annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an electric field. Classical plate theory (CPT) is used for description of the all deformation components based on a symmetric distribution. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness direction of the plate. The properties of plate core can vary from metal at bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally graded piezoelectric sections can be considered on the results of the system. $1^{st}$ and $2^{nd}$ modes of natural frequencies of the system have been evaluated for both solid and annular circular plates, individually.

A refined HSDT for bending and dynamic analysis of FGM plates

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel;Olay, Jaime A. Vina
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.105-119
    • /
    • 2020
  • In this work, a novel higher-order shear deformation theory (HSDT) for static and free vibration analysis of functionally graded (FG) plates is proposed. Unlike the conventional HSDTs, the proposed theory has a novel displacement field which includes undetermined integral terms and contains fewer unknowns. Equations of motion are obtained by using Hamilton's principle. Analytical solutions for the bending and dynamic investigation are determined for simply supported FG plates. The computed results are compared with 3D and quasi-3D solutions and those provided by other plate theories. Numerical results demonstrate that the proposed HSDT can achieve the same accuracy of the conventional HSDTs which have more number of variables.

Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions

  • Aicha, Kablia;Rabia, Benferhat;Daouadji, Tahar Hassaine;Bouzidene, Ahmed
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.575-597
    • /
    • 2020
  • Equilibrium equations of a porous FG plate resting on Winkler-Pasternak foundations with various boundary conditions are derived using a new refined shear deformation theory. Different types of porosity distribution rate are considered. Governing equations are obtained including the plate-foundation interaction. This new model meets the nullity of the transverse shear stress at the upper and lower surfaces of the plate. The novel rule of mixture is proposed to describe and approximate material properties of the FG plates with different distribution case of porosity. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature. Effects of variation of porosity distribution rate, boundary conditions, foundation parameter, power law index, plate aspect ratio, side-to-thickness ratio on the deflections and stresses are all discussed.

Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.279-298
    • /
    • 2016
  • Present disquisition proposes an analytical solution method for exploring the buckling characteristics of porous magneto-electro-elastic functionally graded (MEE-FG) plates with various boundary conditions for the first time. Magneto electro mechanical properties of FGM plate are supposed to change through the thickness direction of plate. The rule of power-law is modified to consider influence of porosity according to two types of distribution namely even and uneven. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM plate under magneto-electrical field via Hamilton's principle. An analytical solution procedure is exploited to achieve the non-dimensional buckling load of porous FG plate exposed to magneto-electrical field with various boundary condition. A parametric study is led to assess the efficacy of material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage, boundary conditions, aspect ratio and side-to-thickness ratio on the non-dimensional buckling load of the plate made of magneto electro elastic FG materials with porosities. It is concluded that these parameters play remarkable roles on the dynamic behavior of porous MEE-FG plates. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

비국소 탄성이론을 이용한 S형상 점진기능재료 나노-스케일 판의 이축 좌굴해석 (Biaxial buckling analysis of sigmoid functionally graded material nano-scale plates using the nonlocal elaticity theory)

  • 이원홍;한성천
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5930-5938
    • /
    • 2013
  • Erigen의 비국소 탄성이론을 이용한 S형상 점진기능재료 나노-스케일 판의 전단변형이론을 정식화하여 평형방성식을 유도하였다. 비국소 탄성이론은 미소 규모 효과를 고려할 수 있고 S형상함수는 점진기능재료의 정확한 특성 변화를 고려할 수 있다. 4변이 단순지지된 나노-스케일 판의 지배방정식을 풀기 위해 Navier 방법을 사용하였다. 거듭 제곱 지수와 비국소 변수의 효과를 나타내기 위한 나노-스케일 판의 해석적 좌굴하중을 제시하였고, 국소 탄성이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 (i) 거듭제곱 지수, (ii) 나노-스케일 판의 크기, (iii) 비국소 계수, (iv) 형상비 그리고 (v) 모드 수 등이 나노-스케일 판의 이축 무차원 좌굴하중에 미치는 효과에 대하여 관찰하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였다.

Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials

  • Karami, Behrouz;Karami, Sara
    • Advances in nano research
    • /
    • 제7권1호
    • /
    • pp.51-61
    • /
    • 2019
  • This paper develops a four-unknown refined plate theory and the Galerkin method to investigate the size-dependent stability behavior of functionally graded material (FGM) under the thermal environment and the FGM having temperature-dependent material properties. In the current study two scale coefficients are considered to examine buckling behavior much accurately. Reuss micromechanical scheme is utilized to estimate the material properties of inhomogeneous nano-size plates. Governing differential equations, classical and non-classical boundary conditions are obtained by utilizing Hamiltonian principles. The results showed the high importance of considering temperature-dependent material properties for buckling analysis. Different influencing parametric on the buckling is studied which may help in design guidelines of such complex structures.

탄성지반위에 놓인 S형상 점진기능재료(FGM)판의 동적 불안정성에 관한 연구 (A Study of Dynamic Instability for Sigmoid Functionally Graded Material Plates on Elastic Foundation)

  • 이원홍;한성천;박원태
    • 한국전산구조공학회논문집
    • /
    • 제28권1호
    • /
    • pp.85-92
    • /
    • 2015
  • 탄성지반위에 놓인 S형상 점진기능재료 고차전단변형 판의 동적 불안정성에 대하여 연구하였다. 고차전단변형이론은 점진기능재료 판의 두께방향으로의 전단변형률과 전단응력의 곡선변화 효과를 고려할 수 있다. Mathieu-Hill 방정식의 형태로 유도된 지배방정식에서 Bolotin 방법을 이용하여 동적 불안정 영역을 결정하였다. 동적 불안정 영역의 경계는 동적 하중과 여기진동수와의 관계로 나타내었다. 고차전단변형이론과 탄성지반 효과가 S형상 점진기능재료 판의 동적 불안정성에 미치는 효과를 제시하였다. Winkler와 Pasternak탄성지반 매개변수의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 정적 하중계수, 거듭제곱 지수 그리고 폭-두께비 등의 동적 불안정 영역에 대한 영향을 분석하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과와 비교 분석하였다. 본 연구에서 제시한 이론적 발전과 수치결과들은 S형상 점진기능재료 구조물의 동적 불안정 해석을 위한 참고자료로 활용될 수 있을 것이다.

Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory

  • Laoufi, Imene;Ameur, Mohammed;Zidi, Mohamed;Bedia, El Abbes Adda;Bousahla, Abdelmoumen Anis
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.889-911
    • /
    • 2016
  • Using the hyperbolic shear deformation plate model and including plate-foundation interaction (Winkler and Pasternak model), an analytical method in order to determine the deflection and stress distributions in simply supported rectangular functionally graded plates (FGP) subjected to a sinusoidal load, a temperature and moisture fields. The present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Materials properties of the plate (elastic, thermal and moisture expansion coefficients) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical examples are presented and discussed for verifying the accuracy of the present theory in predicting the bending response of FGM plates under sinusoidal load and a temperature field as well as moisture concentration. The effects of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratio, ratio of elastic coefficients (ceramic-metal) and three distributions for both temperature and moisture on deflections and stresses are investigated.

Hygro-thermo-mechanical bending analysis of FGM plates using a new HSDT

  • Boukhelf, Fouad;Bouiadjra, Mohamed Bachir;Bouremana, Mohammed;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제21권1호
    • /
    • pp.75-97
    • /
    • 2018
  • In this paper, a novel higher-order shear deformation theory (HSDT) is proposed for the analysis of the hygro-thermo-mechanical behavior of functionally graded (FG) plates resting on elastic foundations. The developed model uses a novel kinematic by considering undetermined integral terms and only four variables are used in this model. The governing equations are deduced based on the principle of virtual work and the number of unknown functions involved is reduced to only four, which is less than the first shear deformation theory (FSDT) and others HSDTs. The Navier-type exact solutions for static analysis of simply supported FG plates subjected to hygro-thermo-mechanical loads are presented. The accuracy and efficiency of the present model is validated by comparing it with various available solutions in the literature. The influences of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratios and elastic coefficients parameters on deflections and stresses of FG plates are also investigated.

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.