• Title/Summary/Keyword: FGF21

Search Result 43, Processing Time 0.038 seconds

Adjunctive hyperbaric oxygen therapy for irradiated rat calvarial defects

  • An, Heesuk;Lee, Jung-Tae;Oh, Seo-Eun;Park, Kyeong-mee;Hu, Kyung-Seok;Kim, Sungtae;Chung, Moon-Kyu
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.2-13
    • /
    • 2019
  • Purpose: The aim of this study was to conduct a histologic evaluation of irradiated calvarial defects in rats 4 weeks after applying fibroblast growth factor-2 (FGF-2) with hyaluronan or biphasic calcium phosphate (BCP) block in the presence or absence of adjunctive hyperbaric oxygen (HBO) therapy. Methods: Twenty rats were divided into HBO and non-HBO (NHBO) groups, each of which was divided into FGF-2 and BCP-block subgroups according to the grafted material. Localized radiation with a single 12-Gy dose was applied to the calvaria of rats to simulate radiotherapy. Four weeks after applying this radiation, 2 symmetrical circular defects with a diameter of 6 mm were created in the parietal bones of each animal. The right-side defect was filled with the materials mentioned above and the left-side defect was not filled (as a control). All defects were covered with a resorbable barrier membrane. During 4 weeks of healing, 1 hour of HBO therapy was applied to the rats in the HBO groups 5 times a week. The rats were then killed, and the calvarial specimens were harvested for radiographic and histologic analyses. Results: New bone formation was greatest in the FGF-2 subgroup, and improvement was not found in the BCP subgroup. HBO seemed to have a minimal effect on new bone formation. There was tendency for more angiogenesis in the HBO groups than the NHBO groups, but the group with HBO and FGF-2 did not show significantly better outcomes than the HBO-only group or the NHBO group with FGF-2. Conclusions: HBO exerted beneficial effects on angiogenesis in calvarial defects of irradiated rats over a 4-week healing period, but it appeared to have minimal effects on bone regeneration. FGF-2 seemed to enhance new bone formation and angiogenesis, but its efficacy appeared to be reduced when HBO was applied.

Genome-wide identification, organization, and expression profiles of the chicken fibroblast growth factor genes in public databases and Vietnamese indigenous Ri chickens against highly pathogenic avian influenza H5N1 virus infection

  • Anh Duc Truong;Ha Thi Thanh Tran;Nhu Thi Chu;Huyen Thi Nguyen;Thi Hao Vu;Yeojin Hong;Ki-Duk Song;Hoang Vu Dang;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.570-583
    • /
    • 2023
  • Objective: Fibroblast growth factors (FGFs) play critical roles in embryo development, and immune responses to infectious diseases. In this study, to investigate the roles of FGFs, we performed genome-wide identification, expression, and functional analyses of FGF family members in chickens. Methods: Chicken FGFs genes were identified and analyzed by using bioinformatics approach. Expression profiles and Hierarchical cluster analysis of the FGFs genes in different chicken tissues were obtained from the genome-wide RNA-seq. Results: A total of 20 FGF genes were identified in the chicken genome, which were classified into seven distinct groups (A-F) in the phylogenetic tree. Gene structure analysis revealed that members of the same clade had the same or similar exon-intron structure. Chromosome mapping suggested that FGF genes were widely dispersed across the chicken genome and were located on chromosomes 1, 4-6, 9-10, 13, 15, 28, and Z. In addition, the interactions among FGF proteins and between FGFs and mitogen-activated protein kinase (MAPK) proteins are limited, indicating that the remaining functions of FGF proteins should be further investigated in chickens. Kyoto encyclopedia of genes and genomes pathway analysis showed that FGF gene interacts with MAPK genes and are involved in stimulating signaling pathway and regulating immune responses. Furthermore, this study identified 15 differentially expressed genes (DEG) in 21 different growth stages during early chicken embryo development. RNA-sequencing data identified the DEG of FGFs on 1- and 3-days post infection in two indigenous Ri chicken lines infected with the highly pathogenic avian influenza virus H5N1 (HPAIV). Finally, all the genes examined through quantitative real-time polymerase chain reaction and RNA-Seq analyses showed similar responses to HPAIV infection in indigenous Ri chicken lines (R2 = 0.92-0.95, p<0.01). Conclusion: This study provides significant insights into the potential functions of FGFs in chickens, including the regulation of MAPK signaling pathways and the immune response of chickens to HPAIV infections.

Optimization of Human Embryonic Stem Cells into Differentiation of Dopaminergic Neurons in Vitro: I. Additive Effect of Neurotrophic Factor on Human Embryonic Stem Cells

  • 이금실;김은영;이영재;신현아;조황윤;이훈택;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.79-79
    • /
    • 2003
  • Embryonic stem cells are capable of differentiating into a variety of cell lineages. However, the ultimate results of differentiation in vitro greatly depend on the duration of treatment and kinds of differentiating inducers added. In order to investigate the efficiencies of various differentiation inducers and the methods of treatment, we examined differentiation patterns of human embryonic stem cell (hESC, MB03) according to several different protocols. Exp. I) Upon differentiation using retinoic acid and ascorbic acid (RA/AA), embryoid bodies (EB, for 4days) derived from hESC was exposed to Rh (10$^{-6}$ M) and AA (50 mM) for 4 days, and were allowed to differentiate in N2 medium for 7, 14, 21, or 28 days. Exp. II) When bFGF was used, neuronal precursor cells were selected for 8 days in N2 medium after EB formation. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14, 21 or 28 days. Exp. III) In addition, to examine the effects of neurotrophic factors in the production of mature neurons, groups of cells were exposed to either BDNF (5 ng/ml) or TGF-$\alpha$(10 ng/ml) during the 28 days of final differentiation. Differentiation patterns of RA/AA or bFGF treated groups were very similar; approximately 82% and 83% of the cells, respectively, were positive for anti-NF200 antibody, while it was about 10% and 11%, respectively, for anti-NF160 antibody in 28 days in N2 medium. Alsor, cells expressing TH were as low as 5%, while the cells doubled when matured at the presence of either BDNF or TGF-$\alpha$. Cells immunoreactive to anti-GAD antibody were approximately 20%. These results suggest that a maturation step rather than differentiation induction step, which is formation of EB, effects more decisively to the ultimate differentiation pattern.

  • PDF

A study of growth factors, chondrogenic differentiation of mesenchymal stem cells and cell response by needle size differences in vitro (인간간엽줄기세포의 연골세포 분화 유도 성장인자 및 주사침 크기 차이에 따른 세포반응에 대한 in vitro 연구)

  • Jeongyun Park;Yu Jeong Hwang;Joseph Junesirk Choi;Jin Young Chon;Suk Won Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Purpose: This aim of this study was to demonstrate growth factors that differentiate human mesenchymal stem cells into chondrocytes and to evaluate cell proliferation enhancement by needle size differences. Materials and Methods: Human mesenchymal stem cells were cultured in chondrogenic medium supplemented with BMP-2, BMP-4, BMP-6, BMP-7, BMP-13, FGF-2, FGF-18, IGF-1, TGF-β1, TGF-β2, TGF-β3 and without growth factors for 14, 21, and 28 days. Then, the expression levels of SOX-5, SOX-6, SOX-9 and FOXO1A were comparatively analyzed. Human mesenchymal stem cells were inoculated into culture dishes using 18, 21, and 26 gauge (G) needles, and cell proliferation was measured after 24, 48, and 72 hours, respectively. Results: In addition to the previously known FGF, IGF-1, and TGFβ1,the BMP family growth factors such as BMP-2, BMP-4, BMP-6, and BMP-7 increased the expression of chondrocyte differentiation genes SOX-5, SOX-6, SOX-9, and FOXO1A. At 48 hours, the 26G group, the smallest needle, showed significant cell proliferation improvement compared to the control group and the 18G group. At 72 hours, the 26G group, the smallest needle, showed significant increase in cell proliferation compared to the control group. Conclusion: Through this study, growth factors with the ability to induce chondrocyte differentiation of human mesenchymal stem cells were investigated, and cell proliferation changes by needle size differences were determined.

Differential Gene Expression in the Bovine Transgenic Nuclear Trasnsfer Embryos (소 형질전환 복제란의 유전자 이상발현 규명)

  • Cho, Jong-Ki;Song, Bong-Seok;Yong, Hwan-Yul;Lee, Doo-Soo;Koo, Deok-Bon;Lee, Kyung-Kwang;Shin, Sang-Tae
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.295-299
    • /
    • 2007
  • The detrimental effects of gene transfection on embryo development and the molecular mechanism behind the differential expression of genes related to early embryo development were assessed in the production of transgenic cow embryos through somatic cell nuclear transfer (NT). Parthenogenetic, IVF, and transgenic NT embryos derived from ${\alpha}_1$-antitrypsin transfected ear fibroblast cells was produced. To investigate the molecular mechanism behind lower developmental competence of transgenic NT embryos, the differential mRNA expression of three genes ($IFN-{\tau}$, Oct4, Fgf4) in the 3 types of embryo (Parthenogenetic, IVF, transgenic NT) was examined. RNA was extracted from ten blastocysts derived from 3 types of embryos and reverse-transcripted for synthesis of the first cDNA. The quantification of 3 gene transcripts ($IFN-{\tau}$, Oct4, and Fgf4) was carried out in three replicate by quantitative real-time reverse transcriptase PCR. Expression level of $IFN-{\tau}$ mRNA was significantly higher in transgenic NT embryos than parthenogenetic and IVF embryos (P<0.05). However, expression level of Oct4 and Fgf4 of transgenic NT embryos was significantly lower than IVF embryos (P<0.05). Altered levels of these three mRNA transcripts may explain some of the embryonic/fetal/neonatal abnormalities observed in offspring from transgenic NT embryos.

Role of Growth Factors and Cytokines on Bleomycin Induced Pulmonary Fibrosis (Bleomycin 유도 폐 섬유화에 있어서 성장인자 및 Cytokine의 역할)

  • Lee, Yong-Hee;Jung, Soon-Hee;Ahn, Chul-Min;Kim, Sung-Kyu;Cho, Sang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.871-888
    • /
    • 1997
  • Background : It is now thought that the earliest manifestation of idiopathic pulmonary fibrosis is alveolitis, that is, an accumulation of inflammatory and immune effector cells within alveolar walls and spaces. Inflammatory cells including alveolar macrophages and resident normal pulmonary tissue cells participate through the release of many variable mediators such as inflammatory growth factors and cytokines, which contribute to tissue damage and finally cause chronic pulmonary inflammation and fibrosis. This study was performed to investigate the source and distribution pattern of transforming growth factor-${\beta}_1$(TGF-${\beta}_1$), platelet derived growth factor(PDGF), basic fibroblast growth factor(bFGF), interleukin 1(IL-1), interleukin 6(IL-6), tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and the role of these mediators on bleomycin(BLM)-induced pulmonary injury and fibrosis in rats. Method : Wistar rats were divided into three groups(control group, BLM treated group, BLM and vitamine E treated group). Animals were sacrificed periodically at 1, 2, 3, 4, 5, 7, 14, 21, 28 days after saline or BLM administration. The effects were compared to the results of bronchoalveolar lavage fluid analysis, light microscopic findings, immunohistochemical stains for six different mediators(TGF-${\beta}_1$, PDGF, bFGF, IL-1, IL-6 and TNF-$\alpha$) and mRNA in situ hybridization for TGF-${\beta}_1$. Results : IL-1 and IL-6 are maximally expressed at postbleomycin 1~7th day which are mainly produced by neutrophils and bronchiolar epithelium. It is thought that they induce recruitment of inflammatory cells at the injury site. The expression of IL-1 and IL-6 at the bronchiolar epithelium within 7th day is an indirect evidence of contribution of bronchiolar epithelial cells to promote and maintain the inflammatory and immune responses adjacent to the airways. TNF-$\alpha$ is mainly produced by neutrophils and bronchiolar epithelial cells during 1~5th day, alveolar macrophages during 7~28th day. At the earlier period, TNF-$\alpha$ causes recruitment of inflammatory cells at the injury site and later stimulates pulmonary fibrosis. The main secreting cells of TGF-${\beta}_1$ are alveolar macrophages and bronchiolar epithelium and the target is pulmonary fibroblasts and extracellular matrix. TGF-${\beta}_1$ and PDGF stimulate proliferation of pulmonary fibroblasts and TGF-${\beta}_1$ and bFGF incite the fibroblasts to produce extracellular matrix. The vitamine E and BLM treated group shows few positive cells(p<0.05). Conclusion : After endothelial and epithelial injury, the neutrophils and bronchiolar epithelium secrete IL-1, IL-6, TNF-$\alpha$ which induce infiltration of many neutrophils. It is thought that variable enzymes and $O_2$ radicals released by these neutrophils cause destruction of normal lung architecture and progression of pulmonary fibrosis. At the 7~28th day, TGF-${\beta}_1$, PDGF, bFGF, TNF-$\alpha$ secreted by alveolar macrophages sting pulmonary fibroblasts into proliferating with increased production of extracellular matrix and finally, they make progression of pulmonary fibrosis. TNF-$\alpha$ compares quite important with TGF-${\beta}_1$ to cause pulmonary fibrosis. Vitamine E seems to decrease the extent of BLM induced pulmonary fibrosis.

  • PDF

Hair-growth Promoting Effect of Microneedle Roller Therapy (미세침요법의 모발성장효과)

  • Lee, Chang Hyun;Lee, Ji Yeon;Shin, Hyun Jong;Ha, Ki Tae;Seo, Hyung Sik;Jeong, Han Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • Micro needle roller therapy has been used for cosmetic purposes, such as reducing skin winkles and improving elasticity of skin. It is claimed that micro needle roller therapy has potentials for connective tissue regeneration by facilitating collagen synthesis. Therefore, there seems to be a possibility that connective tissue regenerating potential of micro needle roller therapy could influence the hair growth cycle. This study, we investigated the hair growth-promoting effects of micro needle roller therapy. C57BL/6 mice were devided into three groups as follows: normal saline-treated, minoxidil-treated, and micro needle roller therapy-received group. Hair growth activity was evaluated by handscopic and microscopic observations. Sections of dorsal skin were stained with hematoxylin and eosin. Expression of BrdU, FGF, and VEGF was detected by immunohistochemical staining. Micro needle roller therapy enhanced the development of hair follicle during anagen. Immunohistochemical analysis revealed that micro neeld roller therapy incresed the expression of BrdU and FGF in the hair follicles of C57BL/6 mice. Furthermore, micro needle roller therapy upregulated mRNA expression of VEGFR-2, FGF-2, EGF - growth factors that play a central role in hair follicle development during anagen. These results suggest that Micro needle roller therapy can potentially be used for the treatment of alopecia.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

Overexpression of GAP Causes the Delay of NGF-induced Neuronal Differentiation and the Inhibition of Tyrosine Phosphorylation of SNT in PC12 Cells

  • Yang, Sung-Il;Kaplan, David
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 1995
  • The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.

  • PDF