• 제목/요약/키워드: FGD systems

검색결과 19건 처리시간 0.017초

A Study on the Coatings for CP System in the Environment in which Thin Layer of Extremely Acidic Fluids are Formed

  • Chang, H.Y.;So, I.S.;Jin, T.F.;Kim, Y.S.;Yoo, Y.R.;Kang, M.S.
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.5-14
    • /
    • 2006
  • A lot of parts in FGD (Flue Gas Desulphurization) systems of fossil-fuel power plants show the environments in which are highly changeable and extremely acidic corrosive medium according to time and locations, e.g. in duct works, coolers and re-heaters etc.. These conditions are formed when system materials are immersed in fluid that flows on them or when exhausted gas is condensed into thin layered medium to contact materials of the system walls and roofs. The environments make troublesome corrosion and air pollution problems that are occurred from the leakage of the condensed solution. The frequent shut-down and repairing works of FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, even the super alloys and Teflon linings sometimes have not been good enough to preventing corrosion. Further more, they are expensive and not easily repairable in short periods of operation stops. In this work, new technology that is effective, economical and easily repairable has proposed to solve the corrosion problems in FGD facilities. This technology contains cathodic protection, coatings and remote monitoring-controlling systems.

제철 산업부산물인 석회석 슬러지의 배연탈황 공정 적용에 관한 연구 (A Study on the Application Limestone Sludge to the Flue Gas Desulfurization Process)

  • 서성관;추용식;심광보;이종규;송훈;윤영민
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.575-583
    • /
    • 2014
  • The flue gas desulfurization (FGD) process is currently the most effective process utilized to remove sulfur dioxide from stack gases of coal-fired plants. However, FGD systems use a lot of limestone as desulfurizing agent. In this study, we use limestone sludge, which is a by-product of the steel industry, to replace the desulfurizing agent of the FGD system. The limestone particle size is found to be unrelated to the desulfurizing rate; the gypsum purity, however, is related. Limestone sludge mixes with limestone slurry delivered at a constant rate in a desulfurizing agent with organic acid are expected to lead to a high desulfurization efficiency and high quality by-product (gypsum).

A Study on the Desulfurization Efficiency of Limestone Sludge with Various Admixtures

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.479-482
    • /
    • 2015
  • The flue gas desulfurization (FGD) process is one of the most effective methods to reduce the amount of $SO_2$ gas (up to 90%) generated by the use of fossil fuel. Limestone is usually used as a desulfurizing agent in the wet-type FGD process; however, the limestone reserves of domestic mines have become exhausted. In this study, limestone sludge produced from the steel works process is used as a desulfurizing agent. Seven different types of additives are also used to improve the efficiency of the desulfurization process. As a result, alkaline additive is identified as the least effective additive, while certain types of organic acids show higher efficiency. It is also observed that the amount of FGD gypsum, which is a by-product of the FGD process, increases with the used of some of those additives.

The Influence of FGD Gypsum Fabricated from Limestone Sludge on Cement Properties

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.676-681
    • /
    • 2016
  • For the purpose of reducing the amount of limestone, which is used as a desulfurization agent to absorbing $SO_X$ gas in thermal power plants, and to recycle limestone sludge generated from a steel mill, limestone sludge was utilized as a desulfurization agent. In this study, cement, made of flue gas desulfurization (FGD) gypsum obtained in a desulfurization process using limestone sludge, was manufactured then, experiments were conducted to identify the physical properties of the paste and mortar using the cement. The results of the crystal phase and microstructure analyses showed that the hydration product of the manufactured cement was similar to that of ordinary Portland cement. No significant decline of workability or compressive strength was observed for any of the specimens. From the results of the experiment, it was determined that FGD gypsum manufactured from limestone sludge did not influence the physical properties of the cement also, quality change did not occur with the use of limestone sludge in the flue gas desulfurization process.

석회석 슬러지의 입도제어에 따른 배연탈황효율에 관한 연구 (A Study on Desulfurization Efficiency of Limestone Sludge with Particle Size)

  • 서성관;추용식;심광보
    • 자원리싸이클링
    • /
    • 제24권6호
    • /
    • pp.17-23
    • /
    • 2015
  • 배연탈황 기술은 화력발전소의 연소가스에서 발생하는 $SO_2$를 제거하는 기술이다. 발전소에서는 주로 석회석을 이용한 습식 배연탈황공정을 적용하고 있으나, 천연자원인 석회석의 고갈 및 높은 운전동력 소비 등의 문제로 석회석을 대체할 수 있는 흡수제 개발에 매진하고 있다. 따라서 본 연구에서는 제철소에서 발생하는 석회석 슬러지를 흡수제로 적용하기 위해 석회석 슬러지의 입도분포에 따른 탈황성능을 검토하고자 하였다. 탈황효율 검토방법으로는 입도에 따른 석회석 슬러지의 물리 화학적 특성 검토 및 $SO_2$가스제거시험 등을 시행하였다.

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

모사 탈황흡수탑을 이용한 Spray Type 탈황설비 최적운전 방안에 관한 연구 (A Study on Optimization of Spray Type Flue Gas Desulfurization (FGD) System)

  • 안희수;박승수;김기형;김영호
    • 공업화학
    • /
    • 제18권1호
    • /
    • pp.29-35
    • /
    • 2007
  • 현재 국내 화력발전소에서 운영중인 일부 배연탈황설비는 건설비 절감을 위해 설계시 여유율을 축소하여 비정상상태에 대응이 어렵고, 노후화 등으로 탈황효율이 저하하는 등 일부의 문제점이 제기되고 있다. 이러한 문제점에 대응하기 위해, 본 논문에서는 흡수액의 pH, 입구 $SO_2$ 농도, 운전 단수 변경 및 liquid distribution ring (LDR) 등의 탈황설비의 운전 조건 변경에 따른 탈황율을 검토하였으며, sulfite 이온 및 Al/Fx 이온이 석회석의 blinding에 미치는 효과에 대해 실험하였다. 흡수액 재순환 펌프를 3대 운전하였을 때는 2대 운전했을 때와 비교하여 탈황율이 최대 12% 향상하였고, LDR을 설치함에 따라 탈황효은 약 2~7%가 향상하였다. Limestone blinding 현상이 발생한 흡수액에 dibasic acid (DBA)를 500, 1,000 ppm 주입하였을 때 흡수액 용존산소가 0.5 ppm 이상 증가하며, limestone blinding 현상을 완화하였다. 흡수액 중에 $Al^{3+}$, F- 이온이 공존한 경우 석회석 용해속도는 20% 감소하였다.

Influences of Cathodic Protection and Coating Properties on the Corrosion Control of Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제4권6호
    • /
    • pp.242-249
    • /
    • 2005
  • A lot of parts in FGD (Flue Gas Desulfurization) systems of fossil-fuel power plants show the environments in which are highly changeable and extremely acidic corrosive medium according to time and locations, e.g. in duct works, coolers and re-heaters etc. These conditions are formed when system materials are immersed in fluid that flows on them or when exhausted gas is condensed into thin layered acidic medium to contact materials of the system walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of the condensed solution. To cathodically protect the metallic structures in extremely acidic fluid, the properties of the protective coatings on the metal surface were very important, and epoxy Novolac coating was applied in this work. On the base of acid immersion tests, hot sulfuric acid decreased the hardness of the coatings and reduced greatly the content of $Na_2O$, $Al_2O_3$, and $SiO_2$ among the main components of the coating. A special kind of CP(Cathodic Protection) system has been developed and tested in a real scale of the FGD facility. Applied coating for this CP system was peeled off and cracked in some parts of the facility. However, the exposed metal surface to extremely acidic fluid by the failure of the coatings was successfully protected by the new CP system.

통합 제조 시스템 설계 : 공정 계획과 AGV 경로 설계의 통합 접근 (Integrated Manufacturing Systems Design : Integrated Approach to Process Plan Selection and AGV Guidepath Design)

  • 서윤호
    • 대한산업공학회지
    • /
    • 제20권3호
    • /
    • pp.151-166
    • /
    • 1994
  • The manufacturing environment on which this research is focused is an FMS in which AGVs are used for material handling and each part type has one or more process plans. The research aims at developing a methodology whereby, given a part and volume mix for production during any production session, the best set of process plans including one plan per part type is selected and the best unidirectional AGV guidepath can be dynamically reconfigured in response to changes in parts and lot sizes combination. For the integrated PPS/FGD problem in which two functions of process plan selection (PPS) and flexible AGV guidepath design (FGD) are integrated, a zero-one integer programming model is developed. The integrated problem is decomposed into two subproblems, process plan selection given a directed AGV layout and AGV guidepath design with a fixed process plan per part type. A heuristic algorithm that alternately and iteratively solves these two subproblems is developed. The effectiveness of the heuristic algorithm is tested by solving various randomly generated sample problems and comparing the heuristic solutions with those obtained by an exact procedure. From the test results, the following conclusions are drawn: 1) For a reasonable size problem, the heuristic is very effective. 2) By integrating the two functions of PPS and FGD, a remarkable benefit in total production time for a given part and volume mix is gained.

  • PDF

A Study on the Fluoro-polymer Composite Coatings for Protecting the Corrosion of Fossil-fuel Power Plants

  • Kang, Min Soo;Lee, Byung Seung;Chang, Hyun Young;Jin, Tae Eun;So, Il Soo
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.62-67
    • /
    • 2007
  • Several heavy duty coatings at an every kind industry facilities to various systems currently have been applied review to the many industry fields. Corrosion-protective characteristics in the case of novolac epoxy among them and unsaturated polyester have been applied most widely. epoxy and flake heavy duty coatings are applied for such reason in an every kind facilities(stack, FGD, cooler, chemical tank etc) of a fossil-fuel power plants Cases of the fossil-fuel power plants are exposed to more severe corrosion environment compared with other facilities and It is difficult to display the performance of long-term method at apply to be the partial. Our study shows fluoro-polymer composite coating method to overcome of the limit. The comparison did previous method and heavy duty coating about FGD plants most at a corrosion environment among fossil-fuel power plants. Additionally, other facilities examined different heavy duty method. The design mode of fluoro-polymer composite coating according to an every kind facilities show extensive methods that are characteristic revelation of film(top, middle and primer layer) composition of the paint, film thickness in accordance with a facilities corrosion and the corrosion protective effectiveness to come into being use fluoro-polymer composite with heavy duty paint(epoxy).