• Title/Summary/Keyword: FFT Processor

Search Result 143, Processing Time 0.033 seconds

The Design and implementation of parallel processing system using the $Nios^{(R)}$ II embedded processor ($Nios^{(R)}$ II 임베디드 프로세서를 사용한 병렬처리 시스템의 설계 및 구현)

  • Lee, Si-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.97-103
    • /
    • 2009
  • In this thesis, we discuss the implementation of parallel processing system which is able to get a high degree of efficiency(size, cost, performance and flexibility) by using $Nios^{(R)}$ II(32bit RISC(Reduced Instruction Set Computer) processor) embedded processor in DE2-$70^{(R)}$ reference board. The designed Parallel processing system is master-slave, shared memory and MIMD(Mu1tiple Instruction-Multiple Data stream) architecture with 4-processor. For performance test of system, N-point FFT is used. The result is represented speed-up as follow; in the case of using 2-processor(core), speed-up is shown as average 1.8 times as 1-processor's. When 4-processor, the speed-up is shown as average 2.4 times as it's.

Efficient IFFT Design Using Mapping Method (Mapping 기법을 이용한 효율적인 IFFT 설계)

  • Jang, In-Gul;Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.11-18
    • /
    • 2007
  • FFT(Fast Fourier Transform) processor is one of the key components in the implementation of OFDM systems such as WiBro, DAB and UWB systems. Most of the researches on the implementation of FFT processors have focused on reducing the complexities of multipliers, memory and control circuits. In this paper, to reduce the memory size required for IFFT(Inverse Fast Fourier Transform), we propose a new IFFT design method based on a mapping method. By simulations, it is shown that the reposed IFFT design method achieves more than 60% area reduction and much SQNR(Signal-to-Quantization-Noise Ratio) gain compared with previous IFFT circuits.

The Design of Expansible Digital Pulse Compressor Using Digital Signal Processors (DSP를 이용한 확장 가능한 디지털 펄스압축기 설계)

  • 신현익;류영진;김환우
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.93-98
    • /
    • 2003
  • With the improvement of digital signal processors, digital pulse compressor(DPC) is widely used in radar systems. The DPC can be implemented by using FIR filter algorithm in time domain or FFT algorithm in frequency domain. This paper designs an expansible DPC using multiple DSPs. With ADSP-21060 of Analog Devices Inc., the computation time as a function of the number of received range cells and FIR filter tap is compared and analyzed in time domain using C-language and assembly language. therefore, when radar system parameters are determined, the number of DSP's required to implement DPC can be easily estimated.

A Study on SLM Method for PAPR Reduction by Scaling without Side Information in WiBro Systems (WiBro 시스템에서 스케일링을 이용한 PAPR 감소를 위한 부정보가 없는 SLM 기법 연구)

  • Lee, Jae-Sun;Gwak, Do-Young;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.389-393
    • /
    • 2008
  • OFDM (Orthogonal Frequency Division Multiplexing) modulation using the orthogonal subcarriers reduces the delay spread by increasing robustness to multipath fading and can use overlapped bandwidth due to orthogonality on frequency domain. Thus data rate and spectral efficiency are increased. Because of these reason, OFDM is used for high speed data transmission for multimedia transmission as HSDPA, WiBro, WLAN. However OFDM also has drawbacks that have the high PAPR (Peak to Average Power Ratio). This high PAPR takes place because of parallel processing a number of data at once using a FFT processor. By high PAPR, amplifier doesn't act in dynamic range, so that BER performance is worse. In this paper, we reduce the PAPR using SLM(Selective Mapping). SLM doesn't effect on BER performance, but should transmit the side information for demodulation [2]. Also PAPR is higher as the number of FFT processor is larger. Thus SLM has high complexity. In this paper, we analyze the performance of SLM using scaling for no side information.

  • PDF

Memory Reduction of IFFT Using Combined Integer Mapping for OFDM Transmitters (CIM(Combined Integer Mapping)을 이용한 OFDM 송신기의 IFFT 메모리 감소)

  • Lee, Jae-Kyung;Jang, In-Gul;Chung, Jin-Gyun;Lee, Chul-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.36-42
    • /
    • 2010
  • FFT(Fast Fourier Transform) processor is one of the key components in the implementation of OFDM systems for many wireless standards such as IEEE 802.22. To improve the performances of FFT processors, various studies have been carried out to reduce the complexities of multipliers, memory interface, control schemes and so on. While the number of FFT stages increases logarithmically $log_2N$) as the FFT point-size (N) increases, the number of required registers (or, memories) increases linearly. In large point-size FFT designs, the registers occupy more than 70% of the chip area. In this paper, to reduce the memory size of IFFT for OFDM transmitters, we propose a new IFFT design method based on a combined mapping of modulated data, pilot and null signals. The proposed method focuses on reducing the sizes of the registers in the first two stages of the IFFT architectures since the first two stages require 75% of the total registers. By simulations of 2048-point IFFT design for cognitive radio systems, it is shown that the proposed IFFT design method achieves more than 38.5% area reduction compared with previous IFFT designs.

Performance Improvement of Current-mode Device for Digital Audio Processor (디지털 오디오 프로세서용 전류모드 소자의 성능 개선에 관한 연구)

  • Kim, Seong-Kweon;Cho, Ju-Phil;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.35-41
    • /
    • 2008
  • This paper presents the design method of current-mode signal processing for high speed and low power digital audio signal processing. The digital audio processor requires a digital signal processing such as fast Fourier transform (FFT), which has a problem of large power consumption according to the settled point number and high speed operation. Therefore, a current-mode signal processing with a switched Current (SI) circuit was employed to the digital audio signal processing because a limited battery life should be considered for a low power operation. However, current memory that construct a SI circuit has a problem called clock-feedthrough. In this paper, we examine the connection of dummy MOS that is the common solution of clock-feedthrough and are willing to calculate the relation of width between dummy MOS for a proposal of the design methodology for improvement of current memory. As a result of simulation, in case of that the width of memory MOS is 20um, ratio of input current and bias current is 0.3, the relation of width between switch MOS and dummy MOS is $W_{M4}=1.95W_{M3}+1.2$ for the width of switch MOS is 2~5um, it is $W_{M4}=0.92W_{M3}+6.3$ for the width of switch MOS is 5~10um. Then the defined relation of MOS transistors can be a useful design guidance for a high speed low power digital audio processor.

  • PDF

Design and Performance Analysis of A TMS320C67x-based Parallel Signal Processing System (TMS320C67x 기반 병렬신호처리시스템의 설계와 성능분석)

  • Moon, Byung-Pyo;Park, Joon-Seok;Jeon, Chang-Ho;Park, Sung-Joo;Lee, Dong-Ho;Han, Ki-Taek
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • This paper deals with a design and performance analysis of a parallel signal processing system based on TMS320C67x. With an emphasis on the board-level design of the processor unit four models are proposed with different memory configurations and internal bus schemes. Several approaches to parallel processing of 2D FFT are also presented to be used for performance analysis. The performance of four board models are estimated and compared in terms of the time spent for local memory access, inter-processor communication, and inter-board communication. The results of performance analysis show that, when performance and implementation complexity are taken into account, the model with both local and shared memories is the most desirable.

  • PDF

Novel Radix-26 DF IFFT Processor with Low Computational Complexity (연산복잡도가 적은 radix-26 FFT 프로세서)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Fast Fourier transform (FFT) processors have been widely used in various application such as communications, image, and biomedical signal processing. Especially, high-performance and low-power FFT processing is indispensable in OFDM-based communication systems. This paper presents a novel radix-26 FFT algorithm with low computational complexity and high hardware efficiency. Applying a 7-dimensional index mapping, the twiddle factor is decomposed and then radix-26 FFT algorithm is derived. The proposed algorithm has a simple twiddle factor sequence and a small number of complex multiplications, which can reduce the memory size for storing the twiddle factor. When the coefficient of twiddle factor is small, complex constant multipliers can be used efficiently instead of complex multipliers. Complex constant multipliers can be designed more efficiently using canonic signed digit (CSD) and common subexpression elimination (CSE) algorithm. An efficient complex constant multiplier design method for the twiddle factor multiplication used in the proposed radix-26 algorithm is proposed applying CSD and CSE algorithm. To evaluate performance of the previous and the proposed methods, 256-point single-path delay feedback (SDF) FFT is designed and synthesized into FPGA. The proposed algorithm uses about 10% less hardware than the previous algorithm.

New Reference Generation for a Single-Phase Active Power Filter to Improve Steady State Performance

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Bae, Byung-Yeol
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.412-418
    • /
    • 2010
  • This paper proposes a new algorithm to generate a reference signal for an active power filter using a sliding-window FFT operation to improve the steady-state performance of the active power filter. In the proposed algorithm the sliding-window FFT operation is applied to the load current to generate the reference value for the compensating current. The magnitude and phase-angle for each order of harmonics are respectively averaged for 14 periods. Furthermore, the phase-angle delay for each order of harmonics passing through the controller is corrected in advance to improve the compensation performance. The steady-state and transient performance of the proposed algorithm was verified through computer simulations and experimental work with a hardware prototype. A single-phase active power filter with the proposed algorithm can offer a reduction in THD from 75% to 4% when it is applied to a non-linear load composed of a diode bridge and a RC circuit. The active power filter with the proposed reference generation method shows accurate harmonic compensation performance compared with previously developed methods, in which the THD of source current is higher than 5%.