• Title/Summary/Keyword: FERET Database

Search Result 15, Processing Time 0.025 seconds

FERET DATA SET에서의 PCA와 ICA의 비교

  • Kim, Sung-Soo;Moon, Hyeon-Joon;Kim, Jaihie
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2355-2358
    • /
    • 2003
  • The purpose of this paper is to investigate two major feature extraction techniques based on generic modular face recognition system. Detailed algorithms are described for principal component analysis (PCA) and independent component analysis (ICA). PCA and ICA ate statistical techniques for feature extraction and their incorporation into a face recognition system requires numerous design decisions. We explicitly state the design decisions by introducing a modular-based face recognition system since some of these decision are not documented in the literature. We explored different implementations of each module, and evaluate the statistical feature extraction algorithms based on the FERET performance evaluation protocol (the de facto standard method for evaluating face recognition algorithms). In this paper, we perform two experiments. In the first experiment, we report performance results on the FERET database based on PCA. In the second experiment, we examine performance variations based on ICA feature extraction algorithm. The experimental results are reported using four different categories of image sets including front, lighting, and duplicate images.

  • PDF

Face Recognition by Fiducial Points Based Gabor and LBP Features (특징점기반 Gabor 및 LBP 피쳐를 이용한 얼굴 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The accuracy of a real facial recognition system can be varied according to the accuracy of the eye detection algorithm when we design and implement a semi-automatic facial recognition algorithm depending on the eye position of a database. In this paper, a fully automatic facial recognition algorithm is proposed such that Gabor and LBP features are extracted from fiducial points of a face graph which was created by using fiducial points based on the eyes, nose, mouth and border lines of a face, fitted on the face image. In this algorithm, the recognition performance could be increased because a face graph can be fitted on a face image automatically and fiducial points based LPB features are implemented with the basic Gabor features. The simulation results show that the proposed algorithm can be used in real-time recognition for more than 1,000 faces and produce good recognition performance for each data set.

Affine Invariant Local Descriptors for Face Recognition (얼굴인식을 위한 어파인 불변 지역 서술자)

  • Gao, Yongbin;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.375-380
    • /
    • 2014
  • Under controlled environment, such as fixed viewpoints or consistent illumination, the performance of face recognition is usually high enough to be acceptable nowadays. Face recognition is, however, a still challenging task in real world. SIFT(Scale Invariant Feature Transformation) algorithm is scale and rotation invariant, which is powerful only in the case of small viewpoint changes. However, it often fails when viewpoint of faces changes in wide range. In this paper, we use Affine SIFT (Scale Invariant Feature Transformation; ASIFT) to detect affine invariant local descriptors for face recognition under wide viewpoint changes. The ASIFT is an extension of SIFT algorithm to solve this weakness. In our scheme, ASIFT is applied only to gallery face, while SIFT algorithm is applied to probe face. ASIFT generates a series of different viewpoints using affine transformation. Therefore, the ASIFT allows viewpoint differences between gallery face and probe face. Experiment results showed our framework achieved higher recognition accuracy than the original SIFT algorithm on FERET database.

Detection of Pupil Center using Projection Function and Hough Transform (프로젝션 함수와 허프 변환을 이용한 눈동자 중심점 찾기)

  • Choi, Yeon-Seok;Mun, Won-Ho;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.167-170
    • /
    • 2010
  • In this paper, we proposed a novel algorithm to detect the center of pupil in frontal view face. This algorithm, at first, extract an eye region from the face image using integral projection function and variance projection function. In an eye region, detect the center of pupil positions using circular hough transform with sobel edge mask. The experimental results show good performance in detecting pupil center from FERET face image.

  • PDF

A Fast and Efficient Haar-Like Feature Selection Algorithm for Object Detection (객체검출을 위한 빠르고 효율적인 Haar-Like 피쳐 선택 알고리즘)

  • Chung, Byung Woo;Park, Ki-Yeong;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.486-491
    • /
    • 2013
  • This paper proposes a fast and efficient Haar-like feature selection algorithm for training classifier used in object detection. Many features selected by Haar-like feature selection algorithm and existing AdaBoost algorithm are either similar in shape or overlapping due to considering only feature's error rate. The proposed algorithm calculates similarity of features by their shape and distance between features. Fast and efficient feature selection is made possible by removing selected features and features with high similarity from feature set. FERET face database is used to compare performance of classifiers trained by previous algorithm and proposed algorithm. Experimental results show improved performance comparing classifier trained by proposed method to classifier trained by previous method. When classifier is trained to show same performance, proposed method shows 20% reduction of features used in classification.

Fully Automatic Facial Recognition Algorithm By Using Gabor Feature Based Face Graph (가버 피쳐기반 얼굴 그래프를 이용한 완전 자동 안면 인식 알고리즘)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2011
  • The facial recognition algorithms using Gabor wavelet based face graph produce very good performance while they have some weakness such as a large amount of computation and an irregular result depend on initial location. We proposed a fully automatic facial recognition algorithm using a Gabor feature based geometric deformable face graph matching. The initial location and size of a face graph can be selected using Adaboost detection results for speed-up. To find the best face graph with the face model graph by updating the size and location of the graph, the geometric transformable parameters are defined. The best parameters for an optimal face graph are derived using an optimization technique. The simulation results show that the proposed algorithm can produce very good performance with recognition rate 96.7% and recognition speed 0.26 sec for FERET database.

Efficient Eye Location for Biomedical Imaging using Two-level Classifier Scheme

  • Nam, Mi-Young;Wang, Xi;Rhee, Phill-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.828-835
    • /
    • 2008
  • We present a novel method for eye location by means of a two-level classifier scheme. Locating the eye by machine-inspection of an image or video is an important problem for Computer Vision and is of particular value to applications in biomedical imaging. Our method aims to overcome the significant challenge of an eye-location that is able to maintain high accuracy by disregarding highly variable changes in the environment. A first level of computational analysis processes this image context. This is followed by object detection by means of a two-class discrimination classifier(second algorithmic level).We have tested our eye location system using FERET and BioID database. We compare the performance of two-level classifier with that of non-level classifier, and found it's better performance.

Viewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity

  • Gao, Yongbin;Lee, Hyo Jong
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.643-654
    • /
    • 2015
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.

Affine Local Descriptors for Viewpoint Invariant Face Recognition

  • Gao, Yongbin;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.781-784
    • /
    • 2014
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we use Affine SIFT to detect affine invariant local descriptors for face recognition under large viewpoint change. Affine SIFT is an extension of SIFT algorithm. SIFT algorithm is scale and rotation invariant, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. In our scheme, Affine SIFT is used for both gallery face and probe face, which generates a series of different viewpoints using affine transformation. Therefore, Affine SIFT allows viewpoint difference between gallery face and probe face. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm on FERET database.

The Robust Derivative Code for Object Recognition

  • Wang, Hainan;Zhang, Baochang;Zheng, Hong;Cao, Yao;Guo, Zhenhua;Qian, Chengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.272-287
    • /
    • 2017
  • This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.