• Title/Summary/Keyword: FEMAP

Search Result 8, Processing Time 0.019 seconds

Implementation and assessment of advanced failure criteria for composite layered structures in FEMAP

  • Grasso, Amedeo;Nali, Pietro;Cinefra, Maria
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.51-67
    • /
    • 2019
  • AMOSC (Automatic Margin Of Safety Calculation) is a SW tool which has been developed to calculate the failure index of layered composite structures by referring to the cutting edge state-of-the-art LaRC05 criterion. The stress field is calculated by a finite element code. AMOSC allows the user to calculate the failure index also by referring to the classical Hoffman criterion (which is commonly applied in the aerospace industry). When developing the code, particular care was devoted to the computational efficiency of the code and to the automatic reporting capability. The tool implemented is an API which has been embedded into Femap Siemens SW custom tools. Then, a user friendly graphical interface has been associated to the API. A number of study-cases have been solved to validate the code and they are illustrated through this work. Moreover, for the same structure, the differences in results produced by passing from Hoffman to LaRC05 criterion have been identified and discussed. A number of additional comparisons have thus been produced between the results obtained by applying the above two criteria. Possible future developments could explore the sensitivity of the failure indexes to a more accurate stress field inputs (e.g. by employing finite elements formulated on the basis of higher order/hierarchical kinematic theories).

NE/NASTRAN과 FEMAP을 이용한 선박과 케이슨의 충돌 응답 해석

  • 주서진;백영인;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.674-684
    • /
    • 2002
  • 선박이 물품의 제하 및 적하를 위하여 컨테이너 부두에 접항시 선박의 케이슨과의 충돌에 의한 케이슨의 발생 응력을 파악함으로써 구조 안정성을 검토하였다. 선박이 일정 속도로 항만에 접항시 선박은 케이슨에 부착된 방충재와 충돌하게 된다. 케이슨에 부착된 방충재는 선박의 운동에너지를 흡수하여 케이슨으로 전달되는 전달 에너지를 최소화하여 케이슨의 구조물에 발행하는 응력을 최소화하도록 설계한다. (중략)

  • PDF

Development of Design Software for MEMS integrating Commercial Codes: DS/MEMS (상용코드 통합을 통한 미소기전집적시스템의 설계 소프트웨어 개발:DS/MEMS)

  • 허재성;이상훈;곽병만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.180-187
    • /
    • 2003
  • A CAD-based seamless design system for MEMS named DS/MEMS was developed which performs coupled-field analysis, optimal and robust design. DS/MEMS has been developed by means of integrating commercial codes and inhouse code-SolidWorks, FEMAP, ANSYS and CA/MEMS. This strategy results in versatility that means to include various analysis model, corresponding analyses and approximated design sensitivity analysis and user friendliness that design variables are taken to be selectable directly from a CAD model, that the problem is formulated under a window environment and that the manual job during optimization process is almost eliminated. DS/MEMS works on a parametric CAD platform, integrating CAD modeling, analysis, and optimization. Nonlinear programming algorithms, the Taguchi method, and response surface method are made available for optimization. One application problem is taken to illustrate the proposed methodology and show the feasibility of DS/MEMS as a practical tool.

Efficient and automated method of collapse assessment

  • Qi, Yongsheng;Gu, Qiang;Li, Dong
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.561-570
    • /
    • 2012
  • Seismic collapse analysis requires efficient and automated method to perform thousands of time history analyses. The paper introduced the advantages of speed and convergence property of explicit method, provided a few techniques to accelerate speed of calculation and developed an automated procedure for collapse assessment, which combines the strong capacity of commercial explicit finite element software and the flexible, intelligent specialties of control program written in FORTRAN language aiming at collapse analysis, so that tedious and heavy work of collapse analysis based on FEMAP695 can be easily implemented and resource of calculation can be made the best use of. All the key commands of control program are provided to help analyzers and engineers to cope with collapse assessment conveniently.

STEP-Based Information Exchange for Structural Analysis and Optimization (STEP을 이용한 구조해석 및 최적설계 정보교환)

  • Baek, Ju-Hwan;Min, Seung-Jae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • In the product design process computer-aided engineering and optimization tolls are widely utilized in order to reduce the total development time and cost. Since several simulation tools are involved in the process, information losses, omissions, or errors are common and the importance of seamless information exchange among the tools has been increased. In this work, ISO STEP standards are adopted to represent the neutral format for structural analysis and optimization. The schema of AP209 defined the information of finite element analysis is used and the new schema is proposed to describe the information of structural optimization based on the STEP methodology. The schema is implemented by EXPRESS, information modeling language, and ST-Developer is employed to generate C++ classes and STEP Rose Library by using the schema denoted. To substantiate the proposed approach, the information access interfaces of the finite element modeling software (FEMAP), structural optimization software(GENESIS) and in-house topology optimization program are developed. Examples are shown to validate the information exchange of finite element analysis and structural optimization using STEP standards.

STEP-Based CAE/CAO Information Exchange (STEP을 이용한 CAE/CAO 정보교환)

  • Baek, Ju-Hwan;Min, Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1234-1239
    • /
    • 2003
  • In the product design process computer-aided engineering and optimization tools are widely utilized in order to reduce the total development time and cost. Since several simulation tools are involved in the process, information losses, omissions, or errors are common and the importance of seamless information exchange among the tools has been increased. In this study ISO STEP standards are adopted to represent the neutral format for CAE/CAO information exchange. The schema of AP209 is used to define the information of finite element analysis and the new schema is proposed to describe the information of structural optimization based on the STEP methodology. The schema is implemented by EXPRESS, information modeling language, and ST-Developer is employed to generate C++ classes and STEP Rose Library by using the schema denoted. To substantiate the proposed approach, the information access interfaces of the finite element modeling software (FEMAP), structural optimization software (GENESIS) and in-house topology optimization program are developed. Examples of the size optimization of a three-bar truss and topology optimization of a MBB beam are shown to validate the information exchange of finite element analysis and structural optimization using STEP standards.

  • PDF

Biomechanical Changes of the Lumbar Segment after Total Disc Replacement : Charite$^{(R)}$, Prodisc$^{(R)}$ and Maverick$^{(R)}$ Using Finite Element Model Study

  • Kim, Ki-Tack;Lee, Sang-Hun;Suk, Kyung-Soo;Lee, Jung-Hee;Jeong, Bi-O
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.446-453
    • /
    • 2010
  • Objective : The purpose of this study was to analyze the biomechanical effects of three different constrained types of an artificial disc on the implanted and adjacent segments in the lumbar spine using a finite element model (FEM). Methods : The created intact model was validated by comparing the flexion-extension response without pre-load with the corresponding results obtained from the published experimental studies. The validated intact lumbar model was tested after implantation of three artificial discs at L4-5. Each implanted model was subjected to a combination of 400 N follower load and 5 Nm of flexion/extension moments. ABAQUS$^{TM}$ version 6.5 (ABAQUS Inc., Providence, RI, USA) and FEMAP version 8.20 (Electronic Data Systems Corp., Plano, TX, USA) were used for meshing and analysis of geometry of the intact and implanted models. Results : Under the flexion load, the intersegmental rotation angles of all the implanted models were similar to that of the intact model, but under the extension load, the values were greater than that of the intact model. The facet contact loads of three implanted models were greater than the loads observed with the intact model. Conclusion : Under the flexion load, three types of the implanted model at the L4-5 level showed the intersegmental rotation angle similar to the one measured with the intact model. Under the extension load, all of the artificial disc implanted models demonstrated an increased extension rotational angle at the operated level (L4-5), resulting in an increase under the facet contact load when compared with the adjacent segments. The increased facet load may lead to facet degeneration.

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.