• Title/Summary/Keyword: FEM simulations

Search Result 305, Processing Time 0.026 seconds

Shock and Vibration Reduction of the Opto-Electronic Protective Device for the Press Machine (프레스 광전자식 방호장치의 충격진동 저감)

  • Choi, Seung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.13-16
    • /
    • 2011
  • The vibration and shock of the opto-electronic protective device was induced mechanical failure or fail to work correctly. In order to identify the exciting frequency components of vibration and shock, vibration signals are measured and analyzed from the mechanical power press. In addition, the modal test for the opto-electronic protective device was performed to investigate the dynamic characteristics. Some FEM simulations were carried out and then anti vibration mount was made for opto-electronic protective device. Based on the results of simulations, some kind of rubber mounts were tested to demonstrate the reduction of vibration and shock. It was verified by the test that a considerable amount of vibration and shock were reduced.

A Study on the Defect Formation in Conform Process (CONFORM공정에서의 결함생성에 관한 연구)

  • 김영호;조진래;곽인섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.210-213
    • /
    • 1995
  • In this study,the effect of both process parameters (wheel velocity, friction coefficients between die and billet, etc) and die-shape (abutment height and shape, flash gap, etc.) on the surface defect on forming process is theoretically investigated. For this work, computer simulation was performed by using the DEFORM, a commercial FEM code. Through numerous simulations with different parameters and die shapes, We propose one optimal die shape for CONFORM process which can remove surface defect.

  • PDF

Finite Element Analysis of Stent Expansion Considering Stent, Artery and Plaque Interaction (유한요소 해석방법을 이용한 스텐트와 혈관, Plaque의 상호작용에 관한 연구)

  • Kim, Sung-Min;Park, Sung-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.121-125
    • /
    • 2006
  • In this paper, results are presented by nonlinear finite element simulations in order to analy the interactions between the stent and artery or plaque. Maximum of von Mises stress was calculated in the contacting areas between the stent and the artery. The simulated results show that the distal end of stent, which tilts after expansion, may injure the artery wall. In conclusion, this study may help designing new stents.

Application of F.E.M to the Forming Process of Valve-Spring Retainer (유한요소법을 이용한 Valve-Spring Retainer의 공정해석)

  • 오현석;박성호;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.57-68
    • /
    • 1995
  • A design methodology is applied for manufacturing the valve-spring retainer component. The design criterion is the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic TEM has been applied to simulate the conventional five-stage manufacturing processes, which include mainly backward extrusion and heading process. Simulations of one step process from selected stocks to the final product shape are performed for a possibly better process than the conventional one.

  • PDF

An Analysis of the Slider for Near Field Recording (근접장 광 기록용 슬라이더의 부상 특성해석)

  • 서상원;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.363-371
    • /
    • 2000
  • There are some concepts that could achieve Near-Field Recording (NPR). One of concepts is the use of the flying head with Solid Immersion Lens (SIL). The basic concept of this is almost same with that of Hard Disk Drive (HDD). This study presents the flying characteristics of the slider for NFR. Numerical simulations are performed using FEM and Broydon-Fletcher-Goldfarb-Shanno (BFGS) method. Some modifications are considered to improve flying characteristics of the slider.

  • PDF

A Study on Robust Matched Field Processing Based on Feature Extraction (특성치 추출 기법에 의한 강인한 정합장 처리에 관한 연구)

  • 황성진;성우제;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.83-88
    • /
    • 2001
  • In this paper, matched field processing algorithm robust to environmental mismatches in an ocean waveguide based on feature extraction is summarized. However, in applying this processor to localize a source there are two preliminary issues to be resolved. One is the number of eigenvectors to be extracted and the other is the number of environmental samples to be used. To determine these issues, the relation between the number of dominant modes propagating in a given ocean waveguide and that of eigenvectors to be extracted is analyzed. Then, the analysis results are confirmed by the subspace analysis. This analysis quantifies the similarity between the subspace spanned by the signal vectors and that spanned by the eigenvectors to be extracted. The error index is defined as a relative difference between the location estimated by the current processor and the real source location. It is identified that in the case of extracting the largest eigenvectors equal to the number of dominant modes in a given environment, the processor localizes the source successfully. From the numerical simulations, it is shown that use of at least 30 environmental samples guarantee stable performance of the proposed processor.

  • PDF

Control Performance Evaluation of Smart Mid-story Isolation System with RNN Model (RNN 모델을 이용한 스마트 중간층 면진시스템의 제어성능 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.774-779
    • /
    • 2020
  • The seismic response reduction capacity of a smart mid-story isolation system was investigated using the RNN model in this study. For this purpose, an RNN model was developed to make a dynamic response prediction of building structures subjected to seismic loads. An existing tall building with a mid-story isolation system was selected as an example structure for realistic research. A smart mid-story isolation system was comprised of an MR damper instead of existing lead dampers. The RNN model predicted the seismic responses accurately compared to those of the FEM model. The simulation time of the RNN model can be reduced significantly compared to the FEM model. After the numerical simulations, the smart mid-story isolation system could effectively reduce the seismic responses of the existing building compared to the conventional mid-story isolation system.

Detent Force Reduction of a Tubular Linear Generator Using an Axial Stepped Permanent Magnet Structure

  • Eid Ahmad M.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.290-297
    • /
    • 2006
  • Various methods have been discussed to reduce detent force in a tubular permanent magnet type linear single phase AC generator. In particular, the proposed methods depend on variations of the permanent magnet construction. These methods include two approaches in the form of sloped magnets, and conical magnets in addition to the conventional method of optimizing the magnet length. The undesired detent force ripples were calculated by a two dimensional Finite Element Method (FEM). Moreover, the generated electromotive force in the stator coils was calculated for each configuration of the permanent magnet. The experimental results agreed well with those obtained from the FEM-based simulations. Sufficient reduction in the detent force was achieved over the range of 40% while the root mean square of the output voltage was maintained. It was found that sloping the permanent magnet decreased the detent force and at the same time increased the generated rms voltage of the AC generator. The performance of the designed linear AC generator was evaluated in terms of its efficiency, total weight, losses, and power to weight ratio.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

Fundamental Study on Mechanism of Strip Pinching in Rolling (압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구)

  • Lee Chang Woo;Shin Kee Hyun;Hong Wan Kee;Jung Dong Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.127-132
    • /
    • 2004
  • It is very important to find out causes of strip pinching for the high quality of products and fer the stable operation of rolling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD(Cross machine direction) are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Fish tail) across the CMD were found to provide possible major causes of strip pinching.