• Title/Summary/Keyword: FEM dynamic analysis

Search Result 636, Processing Time 0.048 seconds

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

Seismic Analysis on a Control Panel of (Nuclear) Power Plant (발전소 주 제어실 제어패널의 내진해석)

  • Lee, Heung-Shik;Kim, Myung-Gu;Cho, Chongdu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.652-659
    • /
    • 2005
  • In this paper, seismic qualification analysis for the Plant control Panel is carried out to confirm the structural integrity under the seismic conditions represented by required response spectra(RRS). The finite element method(FEM) is used for the analysis and a mode combination method is adopted to obtain a more reliable spectrum analysis results. In addition, the experimental analysis is performed to compare the reliability of the analytical results. The analysis results shows that the plant control panel system is designed to have the dynamic rigidity with no resonance frequency below 33 Hz. The analytically calculated maximum stress of the plant control panel system is $36\%$ of the field strength of material, thus it can be shown that the system has a stable structure for the seismic load.

Estimation of the Dynamic Load of the Utility in Building by TPA Method (건물 바닥 구조 해석 모드의 튜닝)

  • Jeong, Min-Ki;Kwon, Hyung-O;Kim, Hyo-Beom;Lee, Jeong-Ha;Lee, Sang-Yeop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.441-446
    • /
    • 2008
  • The source transfer receiver model ('Source $\times$ Transfer = Response' model) which is widely used by NVH development process of vehicle/transport/machinery to analyze effectively and manage efficiently the structural dynamic behavior is also applicable to construction structure. If the evaluation assessment of the vibration level does not meet the target level, there are two methods, one is source treatment or replacement and the other is the reduction treatment on the transfer structure. In case of source treatment, it is done by source supplier and so, the latter is more practical method to reduce the vibration level. In this study, in order to get the accurate Transfer FE model(floor structure FE model), Experimental modal analysis of part of floor structure and FEM modal analysis of full floor structure are performed, then updating of FE model is performed after correlation analysis between these two results and finally, the modal model and FRF are compared between FE and Experimental results.

  • PDF

Adaptive Finite Element Mesh Generation Schemes for Dynamic Structural Analyses

  • Yoon, Chong-Yul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Reliable dynamic analysis is essential in order to properly maintain structures so that structural hazards may be minimized. The finite element method (FEM) is proven to be an affective approximate method of structural analysis if proper element types and meshes are chosen. When the method is applied to dynamics analyzed in time domain, the meshes may need to be modified at each time step. As many meshes need to be generated, adaptive mesh generation schemes have become an important part in complex time domain dynamic finite element analyses of structures. In this paper, an adaptive mesh generation scheme for dynamic finite element analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method (node movement) and the r-method (element division). The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

Lubrication Analysis of Mechanical Seal using Galerkin Finite Element Method (캘러킨 유한요소법을 이용한 미케니컬 페이스 시일의 윤활성능해석)

  • 최병렬;이안성;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.197-202
    • /
    • 1999
  • A mechanical face seal is a tribe-element intended to control the leakage of working fluid at the interface of a rotating shaft and its housing. The leakage of working fluid decreases as the seal surfaces get closer each other. But a very small seal clearance results in a drastic reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals the compromise between low leakage and acceptable life is important and presents a difficult design problem. And the gap geometry of seal clearance affects seal performance very much and becomes an important design variable. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed using the Galerkin Finite Element Method, which can be readily applied to various seal geometries. The film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, opening forces, restoring moments, leakages, and dynamic coefficients are calculated.

  • PDF

Design and Analysis of a Novel 16/10 Segmented Rotor SRM for 60V Belt-Driven Starter Generator

  • Sun, Xiaodong;Xue, Zhengwang;Han, Shouyi;Xu, Xing;Yang, Zebin;Chen, Long
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.393-398
    • /
    • 2016
  • This paper proposes a novel 16/10 segmented rotor switched reluctance motor (SSRM) for belt-driven starter generators (BSGs). Different from conventional SRMs, the stator of the proposed SSRM consists of two types of stator poles, i.e., exciting and auxiliary poles, and the rotor is constructed from a series of discrete segments. The topology and operation principle of this proposed SSRM are illustrated firstly, and then the design rules are listed. In addition, the finite element method (FEM) is employed to get the static and dynamic characteristics of the proposed SSRM. Finally, the simulation results are presented to show the validity of the proposed SSRM for BSGs.

Dynamic characteristics analysis of the magnetic actuator brake system (MASS) for emergency a car (비상 제동기능을 지닌 전자력 브레이크 시스템(MABS)에 대한 제안 및 동작특성해석)

  • Kang, Jong-Ho;Kim, Tae-Young;Choi, Sang-Min;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.68-70
    • /
    • 2006
  • This paper formulates the principle of the magnetic actuator break system (MASS) for emergency situation driving a car. When the exciting break system of a car is broken, MASS will be able to stop the car by the electric system. MASS controls the rotating wheel to slow down gradually while holding and laying the wheel down several ten times per second. We present the magnetic field and dynamic behavior analyses for the magnetic actuator break system using finite element method (FEM) associated with parameter, for calculating the displacement of the moving parts and the supplying current.

  • PDF

Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments (원형 고무 세그먼트를 갖는 탄성 커플링의 동특성과 적응성)

  • Lee, D.C.;Kim, J.K.;Nam, T.K.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.90-95
    • /
    • 2008
  • Medium and high speed marine diesel engines have been widely used as prime mover in small car ferries and fishing vessels with reduction gear. These propulsion shafting system should be installed and matched the elastic coupling between engine and reduction gear to isolate the vibratory torque. In this paper, the elastic dynamic characteristics of coupling with rubber type circular segments is confirmed by the theoretical analysis using the FEM and the hydraulic exciting test at shop. And its adaptation is investigated in the torsional vibration test in factory shop.

  • PDF

Modeling and Vibration Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀스테이지의 모델링 및 진동제어)

  • Kim, J.I.;Hwang, Y.S.;Kim, Y.S.; Kim, I.S.; Kim, K.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • This paper suggests a precision positioning control technique of a precision positioning stage with coupling effects. The precision positioning stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic characteristics of the precision positioning stage is modeled and identified by the FEM analysis. The dynamic characteristics of the stage are also identified by the frequency domain modeling technique based on the experimental data. Reliability of two modeling methods is examined by comparing the numerically and experimentally produced responses of the stage. This paper proposes a sliding mode control technique with integrator to improve the tracking ability of the precision positioning stage to the complex input signal using. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

A Study for the Maximization of Vibration Characteristics In the Cellular Phone Set with the Vibration Motor (진동모타를 적용한 휴대폰 세트의 진동특성 극대화에 관한 연구)

  • 김헌정;최창환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.356-361
    • /
    • 2001
  • A research to maximize the force transmitted from a vibration motor at the vibration mode, installed in the cellular phone jig, is presented in this study. When the natural frequencies corresponding to the structural vibration modes of the set exist within the range of the driving frequencies acquired by changing the RPM of the vibration motor, the structural vibration resonance is applicable to maximization of the vibration force sensible to the human body such as hands, arms, and hips. The analytical modal analysis using the Finite Elements and the experimental modal testing for the set jig were performed in order to understand the structural modes and the corresponding frequencies. Then the dynamic responses of the set jig to the given driving frequency were measured and the results on maximizing the vibration were confirmed by the FEM dynamic simulation.

  • PDF