• Title/Summary/Keyword: FEM dynamic analysis

Search Result 636, Processing Time 0.032 seconds

Vibration Analysis of Super-Precision Linear Motors (초정밀 선형 모터의 진동 분석)

  • Seol, Jin-Soo;Lee, Woo-Young;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.840-845
    • /
    • 2004
  • Development of the linear motors is recently required to control a high-speed and high-resolution in the high-integrated and speed process industry. This paper presents vibration analyses as well as measurement standards of the newly developed linear motors through analyzing the vibration characteristics of the advanced products. Vibration experiments are conducted for identifying vibration level during operation. They are also included in the modal test to analyze dynamic characteristics. Analytic data using Finite Element Method (FEM) are compared with the results of the modal. The FEM and experiments make it possible to understand these characteristics. Further, through computer simulation for the behavior of moving part to be vibration source, the best acceleration pattern of moving part movement can be verified to achieve effective moving part positioning and reduce the vibration due to moving part movement.

  • PDF

Analysis on lateral vibration characteristics of the deep-sea mining pipe

  • Xiao, Linjing;Liu, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.835-851
    • /
    • 2022
  • This paper analyzes the variation law of the pipe lateral vibration characteristics, it was treated as a beam model, and was dispersed into several subunits based on the FEM. The corresponding stiffness and mass matrix of the pipe was deduced by using Hermite interpolation function, and the overall dynamic balance equation was established. The lateral vibration under different pipe lengths, thicknesses and towing speeds are solved by integral method. The results show that the pipe vibration trend decreases first and then increases, and the vibration value at the ore bin is larger than that at the pump set, and the value at the top is the largest, and the least value location can change with the length increase. Increasing length and thickness can reduce lateral vibration value, while increasing speed can increase the value. Neither the thickness nor the towing speed will change the location where the least value occurs. The vibration intensity will increase with the decrease of pipe length and thickness and the increase of towing speed.

Dynamic Motion Analysis of a Moving Contact by Electromagnetic Repulsion Force in MCCB (3D FEM해석을 통한 배선용 차단기의 가동자 거동해석)

  • Song, Jung-Chun;Kim, Yong-Gi;Ryu, Man-Jong;Seo, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.786-789
    • /
    • 2002
  • The behaviour of contactors protected by arcs under short-circuit currents is analysed using a simple model to represent the electric circuit and the contactor. In most cases, the protection of contactors against short-circuit currents is entrusted to fuses. Fuses are suitable for preventing excessive damage to the contactor, or parts of the contactor, under short-circuit conditions. In particular, they are capable of limiting the thermal and electrodynamic stresses which can lead to arcing or welding together of the contacts of a contactor. This paper is the Dynamic Motion Analysis of a Moving Contact by Electromagnetic Repulsion Force in Molded Case Circuit Breaker(MCCB)

  • PDF

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

Dynamic Analysis of Flexible Mechanisms with Clearances Using Finite Elements (유한요소를 이용한 유연성 간극기구의 동적 해석)

  • 길계환;윤용산
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.288-297
    • /
    • 1990
  • The method of analyzing flexible mechanisms with clearances was studied considering flexibility of beams in the mechanism using finite elements. Both ends of a beam were modeled as free following Dubowsky's impact pair model. Instead some force constraints were imposed at imposed at the connections between adjoining links. Coulomb model has been developed using dry frictions in place of tangential damping forces in the impact pair model and the contact compliance and damping coefficient approximated in a form of root function were used. As examples, impacts of a rigid ball in a cylinder, impact beam model and four-bar mechanisms made up of three flexible links with clearance connections were simulated numerically. The results from examples showed similar but a little bit smaller magnitude of impact forces compared with published studies.

A Study on the Dynamic Characteristics and Finite element analysis of 3-axis road simulator link unit (3축 로드 시뮬레이터의 링크부의 동특성 및 FEM 해석에 관한 연구)

  • 박용래;정상화;류신호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.694-697
    • /
    • 1997
  • As the life cycle of the vehicle become shorter, the method that reduce the development time of new model become more important. In this reason, the development of the simulator that provides similar environment with the actual vehicle load characteristics is increasing. In this paper, the link unit of the 3-axis road simulator is designed and simulated with dynamic analysis software ADMS. and the maximum stress and strain are analyzed for the safety of link and specifications of optimal design using finite element method.

  • PDF

TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL (리어제트 항공기 날개의 천음속 공탄성해석)

  • Tran, T.T.;Kim, D.H.;Kim, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Transonic Flutter Analysis Using Euler Equation and Reduced order Modeling Technique (오일러 방정식 및 저차모델링 기법을 활용한 천음속 플러터 해석)

  • Kim, Dong-Hyun;Kim,, Yo-Han;Kim, Myung-Hwan;Ryu, Gyeong-Joong;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.339-344
    • /
    • 2011
  • In the past much effort has been made to utilize advanced computational fluid dynamic (CFD) programs for aeroelastic simulations and analysis. However, it is limited in the field of unsteady aeroelasticity due to enormous size of computer memory and unreasonably long CPU time. Recently, AAEMS(Aerodynamics is Aeroelasticity minus Structure) was developed for linear time-invariant, coupled fluid-structure systems. In this paper, to demonstrate further the efficiency and accuracy of the new model reduction method, we successfully examine AGARD 445.6 wing modeled by FLUENT CFD, FSIPRO3D and NASTRAN FEM(Finite Element Method) programs. Using the ROM(Reduced Order Modeling) one can predict flutter boundary as a function of the dynamic pressure.

  • PDF

Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model (비즈니스 제트 항공기 날개의 천음속 공탄성 해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Tran, Thanh-Toan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

Analysis of Microstructures in a Forged Ti-6Al-4V Disk (Ti-6Al-4V 단조 디스크의 미세조직 분석)

  • 김대영;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.202-209
    • /
    • 1997
  • The mechanical properties of Ti-6Al-4V greatly vary for changes of microstructures. Therefore, when manufacturing components with this material, it is important to understand the influence of process parameters to the resulting microstructures. In the present investgation, it was attempted to relate the process parameters with the microstructures in a hot forged Ti-6Al-4V disk. The investigation was carried out by a rigid thermo-viscoplastic FEM analysis, flow stress measurements and microstructure studies. It was found that the dynamic recrystallization would hardly occur in this material and that variations of strain, strain rate and temperature of several locations in the disk were below the assumed dynamic recrystallization zone. These findings confirmed the experimental obervations that the microstructures in the disk were only deformed without being recrystallized.

  • PDF