• Title/Summary/Keyword: FEM (Finite element method)

Search Result 3,140, Processing Time 0.035 seconds

Evaluation on the External Restraint Stress in Mass Concrete (매스콘크리트의 외부구속응력에 관한 검토)

  • 강석화;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.111-122
    • /
    • 1996
  • The effects of external restraint on the thermal stresses i n mass concrete are investigated through a series of parametric study. Two major factors affecting the degree of external restraint such as the ratio of length to height of the placed structure (L/H) and the elastic modulus of base structure ($E_r$) are employed as the parameters in a condition which a placing height H is 1.0m. Various conditions of I,/H and E, are analysed by a FEM program and the relationship between these two parameters is examined. The shape of stress distribution due to the external restraint is shown as linearity on the height direction of the section, and is influenced by L/H, $E_r$, and strength development of placed concrete. The external restraint can be devided by two part. One is an axial restraint and the other is a flexural restraint. When the level of external restraint is low, the structure behavior is mainly governed by flexural restraint, otherwise it is dependent on axial restraint. Comparing the calculated stress by the method of the ACI 207 committee with a finite element analysis, the fbrmer overestimates the external restraint stress when the degree of external restraint is weak, and underestimates when it is strong.

An Analytical Study on the Behavior of Slab Structure Considering the Remodeling (리모델링 공사를 고려한 슬래브 구조물의 거동에 관한 해석적 연구)

  • Choi, Hoon;Joo, Hyung-Joong;Lee, Seung-Sik;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • Due to the improvement and stabilization of the social environment, construction market in the urban region is under shrinking. According, researches to lengthen the service life of the existing building structures are under the way through the remodeling or maintenance of deteriorated structures other than the new constructions. Similar situations are widely discussed in the domestic building construction market and the social importance of the remodeling of the existing building structures is increased. Although the structural stability of the building is uncertain due to the frequent repairing and structural changing, the remodeling works are usually conducted. In general, documents such as drawings and calculations for the design of the deteriorated structure to be remodeled are not kept. Accident at the remodeling site frequently occur because of the lack of thorough understanding of changed situations such as loadings, loading paths, changing of the mechanical properties of material, etc. In this paper, using the finite element analysis method, we investigated the structural behaviors of slab in the remodeling building and the results are applied to remodeling construction, and the appropriateness of the remodeling works are evaluated.

AC Loss Characteristic Analysis of Superconducting Power Cable for High Capacity Power Transmission (대용량 전력 전송을 위한 초전도 전력케이블의 교류손실 특성 분석)

  • Lee, Seok-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.57-63
    • /
    • 2019
  • In order to facilitate the supply of gradually increasing power demand, it is also necessary to increase the number of power cables for power transmission as well as generation facilities. However, the expansion of electric power cables for supplying power to most urban areas requires a space for installation of additional cables, and the space for installing cables in domestic downtown areas is insufficient at present. The superconducting power cable, which can transmit more power with the same size, has emerged as an alternative to overcome the insufficient cable installation space. However, superconducting power cables, which have the advantage of large power transmission, have some losses in the AC (Alternating Current) system. Therefore, the design and analysis of AC losses are essential to introduce superconducting power cables in AC power transmission systems. In this paper, we analyze the AC loss of various superconducting power cables and consider the actual superconducting power cables and their application to the system. Although there is a theoretical calculation method of AC loss for single superconducting wire, it is not easy to calculate AC loss of superconducting power cable with large number. Therefore, the authors intend to analyze various kinds of superconducting power cable AC loss by using electromagnetic finite element analysis considering E-J (Electric field-Current density) characteristics of superconductivity. The analysis of the AC loss characteristics of the superconducting power cable will be an important factor in the design and development of the superconducting power cable to be applied to the actual system.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.

Theoretical Research for Unmanned Aircraft Electromagnetic Survey: Electromagnetic Field Calculation and Analysis by Arbitrary Shaped Transmitter-Loop (무인 항공 전자탐사 이론 연구: 임의 모양의 송신루프에 의한 전자기장 반응 계산 및 분석)

  • Bang, Minkyu;Oh, Seokmin;Seol, Soon Jee;Lee, Ki Ha;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.150-161
    • /
    • 2018
  • Recently, unmanned aircraft EM (electromagnetic) survey based on ICT (Information and Communication Technology) has been widely utilized because of the efficiency in regional survey. We performed the theoretical study on the unmanned airship EM system developed by KIGAM (Korea Institute of Geoscience and Mineral resources) as part of the practical application of unmanned aircraft EM survey. Since this system has different configurations of transmitting and receiving loops compared to the conventional aircraft EM systems, a new technique is required for the appropriate interpretation of measured responses. Therefore, we proposed a method to calculate the EM field for the arbitrary shaped transmitter and verified its validity through the comparison with analytic solution for circular loop. In addition, to simulate the magnetic responses by three-dimensionally (3D) distributed anomalies, we have adapted our algorithm to 3D frequency-domain EM modeling algorithm based on the edge-FEM (finite element method). Though the analysis on magnetic field responses from a subsurface anomaly, it was found that the response decreases as the depth of the anomaly increases or the flight altitude increases. Also, it was confirmed that the response became smaller as the resistivity of the anomaly increases. However, a nonlinear trend of the out-of-phase component is shown depending on the depth of the anomaly and the used frequency, that makes it difficult to apply simple analysis based on the mapping of the magnitude of the responses and can cause the non-uniqueness problem in calculating the apparent resistivity. Thus, it is a prerequisite to analyze the appropriate frequency band and flight altitude considering the purpose of the survey and the site conditions when conducting a survey using the unmanned aircraft EM system.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

A FEM study on stress distribution of tooth-supported and implant-supported overdentures retained by telescopic crowns (텔레스코픽 크라운 임플란트 지지 피개의치와 치아 지지 피개의치의 하악골내 응력분포에 관한 유한요소분석)

  • Paek, Jang-Hyun;Lee, Chang-Gyu;Kim, Tae-Hun;Kim, Min-Jung;Kim, Hyeong-Seob;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.10-20
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution in mandibular implant-supported overdentures and tooth-supported overdentures with telescopic crowns. Materials and methods: The assumption of this study was that there were 2, 3, 4 natural teeth and implants which are located in the second premolar and canine regions in various distributed conditions. The mandible, teeth (or implants and abutments), and connectors are modeled, and analyzed with the commercial software, ANSYS Version 10.1. Stress distribution was evaluated under 150 N vertical load bilaterally on 3 experimental conditions - between canine areas, canine and $2^{nd}$ premolars, 10 mm posterior to $2^{nd}$ premolars. Results: Overall, the case of the implant group showed more stress than the case of the teeth group in stress distribution to bone. In stress distribution to superstructures of tooth and implants, there was no significant difference between TH group and IM group and the highest stress appeared in TH-IV and IM-IV. The stress caused from bar was much higher than those of implant and tooth. TH group showed less stress than IM group in stress distribution to abutment teeth and implant. Conclusion: The results shows that it is crucial to make sure that distance between impact loading point and abutment tooth does not get too far apart, and if it does, it is at best to set abutment tooth on premolar tooth region. It will be necessary to conduct more experiments on effects on implants, natural teeth and bone, in order to apply these results to a clinical treatment.

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.