• Title/Summary/Keyword: FEATURE

Search Result 16,504, Processing Time 0.042 seconds

A Feature Selection-based Ensemble Method for Arrhythmia Classification

  • Namsrai, Erdenetuya;Munkhdalai, Tsendsuren;Li, Meijing;Shin, Jung-Hoon;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach.

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Rule-based Feature Model Validation Tool (규칙 기반 특성 모델 검증 도구)

  • Choi, Seung-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.105-113
    • /
    • 2009
  • The feature models are widely used to model the commonalities and variabilities among the products in the domain engineering phase of software product line developments. The findings and corrections of the errors or consistencies in the feature models are essential to the successful software product line engineering. The aids of the automated tools are needed to perform the validation of the feature models effectively. This paper describes the approach based on JESS rule-base system to validate the feature models and proposes the feature model validation tool using this approach. The tool of this paper validates the feature models in real-time when modeling the feature models. Then it provides the information on existence of errors and the explanations on causes of those errors, which allows the feature modeler to create the error-free feature models. This attempt to validate the feature model using the rule-based system is supposed to be the first time in this research field.

  • PDF

Feature Configuration Verification Using JESS Rule-based System (JESS 규칙 기반 시스템을 이용한 특성 구성 검증)

  • Choi, Seung-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.135-144
    • /
    • 2007
  • Feature models are widely used in domain engineering phase of software product lines development to model the common and variable concepts among products. From the feature model, the feature configurations are generated by selecting the features to be included in target product. The feature configuration represents the requirements for the specific product to be implemented. Although there are a lot of researches on how to build and use the feature models and feature configurations, the researches on the formal semantics and reasoning of them are rather inactive. This paper proposes the feature configuration verification approach based on JESS, java-based rule-base system. The Graph Product Line, a standard problem for evaluating the software product line technologies, is used throughout the paper to illustrate this approach. The approach in this paper has advantage of presenting the exact reason causing inconsistency in the feature configuration. In addition, this approach should be easily applied into other software product lines development environments because JESS system can be easily integrated with Java language.

  • PDF

Formal Definition and Consistency Analysis of Feature-Oriented Product Line Analysis Model (특성 지향의 제품계열분석 모델의 정형적 정의와 일관성 분석)

  • Lee Kwanwoo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Product line analysis is an activity for analyzing requirements, their relationships, and constraints in a product line before engineering product line assets (e.g., architectures and components). A feature-oriented commonality and variability analysis (called feature modeling) has been considered an essential part of product line analysis. Commonality and variability analysis, although critical, is not sufficient to develop reusable and adaptable product line assets. Dependencies among features and feature binding time also have significant influences on the design of product line assets. In this paper. we propose a feature-oriented product line analysis model that extends the existing feature model in terms of three aspects (i.e., feature commonality and variability, feature dependency, and feature binding time). To validate the consistency among the three aspects we formally define the feature-oriented product line analysis model and provide rules for checking consistency.

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

A Feature-based Product Configuration Method for Product Line Engineering (제품라인 공학을 위한 휘처 기반의 제품 구성 방법)

  • Bae, Sungjin;Kang, Kyo Chul
    • Journal of Software Engineering Society
    • /
    • v.26 no.2
    • /
    • pp.31-44
    • /
    • 2013
  • Software product line (SPL) engineering is a reuse paradigm that helps organizations increase productivity and improve product quality by developing product from reusable core assets. In SPL, product configuration is the process of selecting the desired features and feature attributes for a given product from a feature model. In order to develop a successful product, feature and feature attribute selection that can achieve the product goal is important. There can be thousands of features and feature attributes resulting in myriads of configurations and finding the best configuration efficiently is a hard task. This paper proposes a systematic process for feature-based product configuration. To support development of a product that satisfys all product goals(business goals and quality goals), a model showing how feature and feature attribute combinations are related to product goals is included and a method for deriving an optimal product configuration using the model is proposed.

  • PDF

RFA: Recursive Feature Addition Algorithm for Machine Learning-Based Malware Classification

  • Byeon, Ji-Yun;Kim, Dae-Ho;Kim, Hee-Chul;Choi, Sang-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.61-68
    • /
    • 2021
  • Recently, various technologies that use machine learning to classify malicious code have been studied. In order to enhance the effectiveness of machine learning, it is most important to extract properties to identify malicious codes and normal binaries. In this paper, we propose a feature extraction method for use in machine learning using recursive methods. The proposed method selects the final feature using recursive methods for individual features to maximize the performance of machine learning. In detail, we use the method of extracting the best performing features among individual feature at each stage, and then combining the extracted features. We extract features with the proposed method and apply them to machine learning algorithms such as Decision Tree, SVM, Random Forest, and KNN, to validate that machine learning performance improves as the steps continue.

Feature Selection Algorithm for Intrusions Detection System using Sequential Forward Search and Random Forest Classifier

  • Lee, Jinlee;Park, Dooho;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5132-5148
    • /
    • 2017
  • Cyber attacks are evolving commensurate with recent developments in information security technology. Intrusion detection systems collect various types of data from computers and networks to detect security threats and analyze the attack information. The large amount of data examined make the large number of computations and low detection rates problematic. Feature selection is expected to improve the classification performance and provide faster and more cost-effective results. Despite the various feature selection studies conducted for intrusion detection systems, it is difficult to automate feature selection because it is based on the knowledge of security experts. This paper proposes a feature selection technique to overcome the performance problems of intrusion detection systems. Focusing on feature selection, the first phase of the proposed system aims at constructing a feature subset using a sequential forward floating search (SFFS) to downsize the dimension of the variables. The second phase constructs a classification model with the selected feature subset using a random forest classifier (RFC) and evaluates the classification accuracy. Experiments were conducted with the NSL-KDD dataset using SFFS-RF, and the results indicated that feature selection techniques are a necessary preprocessing step to improve the overall system performance in systems that handle large datasets. They also verified that SFFS-RF could be used for data classification. In conclusion, SFFS-RF could be the key to improving the classification model performance in machine learning.