• Title/Summary/Keyword: FEATURE

Search Result 16,504, Processing Time 0.045 seconds

FEROM: Feature Extraction and Refinement for Opinion Mining

  • Jeong, Ha-Na;Shin, Dong-Wook;Choi, Joong-Min
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.720-730
    • /
    • 2011
  • Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.

Development of Interactive Feature Selection Algorithm(IFS) for Emotion Recognition

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.282-287
    • /
    • 2006
  • This paper presents an original feature selection method for Emotion Recognition which includes many original elements. Feature selection has some merits regarding pattern recognition performance. Thus, we developed a method called thee 'Interactive Feature Selection' and the results (selected features) of the IFS were applied to an emotion recognition system (ERS), which was also implemented in this research. The innovative feature selection method was based on a Reinforcement Learning Algorithm and since it required responses from human users, it was denoted an 'Interactive Feature Selection'. By performing an IFS, we were able to obtain three top features and apply them to the ERS. Comparing those results from a random selection and Sequential Forward Selection (SFS) and Genetic Algorithm Feature Selection (GAFS), we verified that the top three features were better than the randomly selected feature set.

Real-Time Face Avatar Creation and Warping Algorithm Using Local Mean Method and Facial Feature Point Detection

  • Lee, Eung-Joo;Wei, Li
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.777-786
    • /
    • 2008
  • Human face avatar is important information in nowadays, such as describing real people in virtual world. In this paper, we have presented a face avatar creation and warping algorithm by using face feature analysis method, in order to detect face feature, we utilized local mean method based on facial feature appearance and face geometric information. Then detect facial candidates by using it's character in $YC_bC_r$ color space. Meanwhile, we also defined the rules which are based on face geometric information to limit searching range. For analyzing face feature, we used face feature points to describe their feature, and analyzed geometry relationship of these feature points to create the face avatar. Then we have carried out simulation on PC and embed mobile device such as PDA and mobile phone to evaluate efficiency of the proposed algorithm. From the simulation results, we can confirm that our proposed algorithm will have an outstanding performance and it's execution speed can also be acceptable.

  • PDF

Performance Analysis of Feature Detection Methods for Topology-Based Feature Description (토폴로지 기반 특징 기술을 위한 특징 검출 방법의 성능 분석)

  • Park, Han-Hoon;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • When the scene has less texture or when camera pose largely changes, the existing texture-based feature tracking methods are not reliable. Topology-based feature description methods, which use the geometric relationship between features such as LLAH, is a good alternative. However, they require feature detection methods with high performance. As a basic study on developing an effective feature detection method for topology-based feature description, this paper aims at examining their applicability to topology-based feature description by analyzing the repeatability of several feature detection methods that are included in the OpenCV library. Experimental results show that FAST outperforms the others.

Feature Extraction for Endoscopic Image by using the Scale Invariant Feature Transform(SIFT) (SIFT를 이용한 내시경 영상에서의 특징점 추출)

  • Oh, J.S.;Kim, H.C.;Kim, H.R.;Koo, J.M.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.6-8
    • /
    • 2005
  • Study that uses geometrical information in computer vision is lively. Problem that should be preceded is matching problem before studying. Feature point should be extracted for well matching. There are a lot of methods that extract feature point from former days are studied. Because problem does not exist algorithm that is applied for all images, it is a hot water. Specially, it is not easy to find feature point in endoscope image. The big problem can not decide easily a point that is predicted feature point as can know even if see endoscope image as eyes. Also, accuracy of matching problem can be decided after number of feature points is enough and also distributed on whole image. In this paper studied algorithm that can apply to endoscope image. SIFT method displayed excellent performance when compared with alternative way (Affine invariant point detector etc.) in general image but SIFT parameter that used in general image can't apply to endoscope image. The gual of this paper is abstraction of feature point on endoscope image that controlled by contrast threshold and curvature threshold among the parameters for applying SIFT method on endoscope image. Studied about method that feature points can have good distribution and control number of feature point than traditional alternative way by controlling the parameters on experiment result.

  • PDF

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

A Comparison of Global Feature Extraction Technologies and Their Performance for Image Identification (영상 식별을 위한 전역 특징 추출 기술과 그 성능 비교)

  • Yang, Won-Keun;Cho, A-Young;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • While the circulation of images become active, various requirements to manage increasing database are raised. The content-based technology is one of methods to satisfy these requirements. The image is represented by feature vectors extracted by various methods in the content-based technology. The global feature method insures fast matching speed because the feature vector extracted by the global feature method is formed into a standard shape. The global feature extraction methods are classified into two categories, the spatial feature extraction and statistical feature extraction. And each group is divided by what kind of information is used, color feature or gray scale feature. In this paper, we introduce various global feature extraction technologies and compare their performance by accuracy, recall-precision graph, ANMRR, feature vector size and matching time. According to the experiments, the spatial features show good performance in non-geometrical modifications, and the extraction technologies that use color and histogram feature show the best performance.

An Empirical Study on Improving the Performance of Text Categorization Considering the Relationships between Feature Selection Criteria and Weighting Methods (자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구)

  • Lee Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.2
    • /
    • pp.123-146
    • /
    • 2005
  • This study aims to find consistent strategies for feature selection and feature weighting methods, which can improve the effectiveness and efficiency of kNN text classifier. Feature selection criteria and feature weighting methods are as important factor as classification algorithms to achieve good performance of text categorization systems. Most of the former studies chose conflicting strategies for feature selection criteria and weighting methods. In this study, the performance of several feature selection criteria are measured considering the storage space for inverted index records and the classification time. The classification experiments in this study are conducted to examine the performance of IDF as feature selection criteria and the performance of conventional feature selection criteria, e.g. mutual information, as feature weighting methods. The results of these experiments suggest that using those measures which prefer low-frequency features as feature selection criterion and also as feature weighting method. we can increase the classification speed up to three or five times without loosing classification accuracy.

Classification of Feature Points Required for Multi-Frame Based Building Recognition (멀티 프레임 기반 건물 인식에 필요한 특징점 분류)

  • Park, Si-young;An, Ha-eun;Lee, Gyu-cheol;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.317-327
    • /
    • 2016
  • The extraction of significant feature points from a video is directly associated with the suggested method's function. In particular, the occlusion regions in trees or people, or feature points extracted from the background and not from objects such as the sky or mountains are insignificant and can become the cause of undermined matching or recognition function. This paper classifies the feature points required for building recognition by using multi-frames in order to improve the recognition function(algorithm). First, through SIFT(scale invariant feature transform), the primary feature points are extracted and the mismatching feature points are removed. To categorize the feature points in occlusion regions, RANSAC(random sample consensus) is applied. Since the classified feature points were acquired through the matching method, for one feature point there are multiple descriptors and therefore a process that compiles all of them is also suggested. Experiments have verified that the suggested method is competent in its algorithm.

Feature Selection Method by Information Theory and Particle S warm Optimization (상호정보량과 Binary Particle Swarm Optimization을 이용한 속성선택 기법)

  • Cho, Jae-Hoon;Lee, Dae-Jong;Song, Chang-Kyu;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.191-196
    • /
    • 2009
  • In this paper, we proposed a feature selection method using Binary Particle Swarm Optimization(BPSO) and Mutual information. This proposed method consists of the feature selection part for selecting candidate feature subset by mutual information and the optimal feature selection part for choosing optimal feature subset by BPSO in the candidate feature subsets. In the candidate feature selection part, we computed the mutual information of all features, respectively and selected a candidate feature subset by the ranking of mutual information. In the optimal feature selection part, optimal feature subset can be found by BPSO in the candidate feature subset. In the BPSO process, we used multi-object function to optimize both accuracy of classifier and selected feature subset size. DNA expression dataset are used for estimating the performance of the proposed method. Experimental results show that this method can achieve better performance for pattern recognition problems than conventional ones.