• 제목/요약/키워드: FE strength analysis

검색결과 536건 처리시간 0.027초

전기방사법을 이용한 PVdF/Fe3O4-GO(MGO) 복합 분리막 제조 및 비소 제거 특성평가 (Preparation of PVdF/Fe3O4-GO (MGO) Composite Membrane by Using Electrospinning Technology and its Arsenic Removal Characteristics)

  • 장원기;후건;변홍식;이재용
    • 멤브레인
    • /
    • 제26권6호
    • /
    • pp.480-489
    • /
    • 2016
  • 본 연구에서는, 전기방사법을 이용하여 산화철-산화그래핀($Fe_3O_4/GO$, metallic graphene oxide; MGO)이 도입된 PVdF/MGO 복합나노섬유(PMG)를 제조하였으며, 이를 활용하여 비소제거에 대한 특성 평가를 진행하였다. MGO의 경우 In-situ-wet chemical 방법으로 제조하였으며, FT-IR, XRD분석을 진행하여, 형태와 구조를 확인하였다. 나노섬유 분리막의 기계적 강도 개선을 위하여 열처리과정을 진행하였으며, 제조된 분리막의 우수한 기계적 강도 개선 효과를 확인할 수 있었다. 그러나, PMG 막의 경우, 도입된 MGO의 함량이 증가할수록 기계적 강도가 감소되는 경향성을 보여주었으며, 기공크기 분석결과로부터, $0.3{\sim}0.45{\mu}m$의 기공크기를 가진 다공성 분리막이 제조되었음을 확인할 수 있었다. 수처리용 분리막으로의 활용 가능성 조사를 위해, 수투과도 분석을 실시하였다. 특히, PMG2.0 샘플의 경우 0.3 bar 조건에서, PVdF 나노섬유막($91kg/m^2h$)에 비해 약 70% 향상된 결과값($153kg/m^2h$)을 나타내었다. 또한, 비소 흡착실험 결과로부터, PMG 막의 경우, 비소3가와 5가에 최대 81%, 68%의 높은 제거율을 보여주었으며, 흡착등온선 분석으로부터, 제조된 PMG 막의 경우 비소3가, 5가 모두 Freundlich 흡착거동을 따른다는 것을 확인하였다. 위 모든 결과로부터, PVdF/MGO 복합 나노섬유 분리막은 비소제거 및 수처리용 분리막으로 충분히 활용할 수 있을 것으로 판단된다.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

자동차 알루미늄 범퍼의 가변 곡률 압출공정 개발 (Process Development of Variable Curvature Extrusion for Automotive Aluminum Bumper)

  • 조영준;이상곤;오개희;박상우;김병민
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.327-332
    • /
    • 2008
  • The effectiveness of vehicle parts made through extrusion is in the limelight because of the advantages of high strength stiffness materials can be produced and the number of processes can be drastically reduced. Therefore, the parts should have sufficient stiffness and be lightweight enough to improve fuel efficiency. However, the application of extruded aluminum requires pre-bending technologies that can manufacture the complex designs profiles demanded by vehicle parts. The aim of this research is that the development of the variable curvature extrusion technology that can produce a variety of curvature. In order to produce a variable curvature, the guide transfer speed and transfer time should be controlled properly. The guide transfer speed and transfer time were examined by the theoretical analysis. A model was developed to simulate the deformation behaviors of extrusion and bending process from the symmetric bumper with range of radii from 1863mm to 2163mm. The theoretical analysis and FE analysis were verified through experimental method.

선박용 대형 계류장비의 개발과 강도 평가 (A Study on the Development and Strength Evaluation of the Mooring Fittings with Big Capacity)

  • 김영식;김을년;김미희;김경연
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2017년도 특별논문집
    • /
    • pp.1-7
    • /
    • 2017
  • It has been developed large mooring fittings having the capacity of 160 tons and 180 tons installed on 170K LNG FSRU. The finite element analysis for the mooring fittings was carried out in order to check the structural integrity and to confirm satisfaction of the rule requirements. The 3 kinds of mooring fittings such as chock, bollard and universal fairlead are selected for FE analysis and load test. According to the FE analysis results, all the stress levels satisfied the acceptance criteria guided by the IACS UR A2, ISO standard, ship rules and OCIMF. As test results under design load, no structural defects were found.

  • PDF

수리된 복합 레진 수복물의 파괴 거동에 관한 연구 (The study of fractural behavior of repaired composite)

  • 박상순;남욱;엄아향;김덕수;최기운;최경규
    • Restorative Dentistry and Endodontics
    • /
    • 제35권6호
    • /
    • pp.461-472
    • /
    • 2010
  • 연구목적: 본 연구는 미세인장결합강도와 파괴인성을 통해 복합 레진 수복물의 수리 시기와 표면 처리 방법에 따른 파괴 거동을 알아보고자 시행되었다. 연구 재료 및 방법: Short rod 시편과 composite resin specimen block을 준비하여 표면 처리 방법에 따라 none-treated, sand blasting, bur roughening 군으로 나누고 이를 다시 즉시군과 2주 지연군으로 나누어 수리했다. 결과: 미세인장결합강도와 파괴인성을 측정한 결과, 두 실험 모두에서 즉시군이 지연군보다 높은 값을 보였다. 기계적 표면 처리군이 none-treated군보다 높은 값을 보였고, sand blasting과 bur roughening 사이에 유의한 차이는 없었다. 파괴인성과 미세인장결합강도는 상관 관계가 없었다. FE-SEM을 보아 수복물의 탈락은 균열 전도와 관계가 있는 것으로 보인다. 결론: 수리된 복합 레진의 파괴 거동 평가에는 파괴인성 실험이 적합하다.

직교이방성 복합재료의 극저온 재료 물성치를 고려한 LNG CCS의 강도 평가에 관한 연구 (Strength Assessment of LNG CCS using Strength Analysis Method for Composite Materials)

  • 정한구;양영순
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.114-121
    • /
    • 2014
  • Liquefied natural gas(LNG) cargo containment system(CCS) has the primary function of ensuring both adequate structural safety with respect to sloshing load which is defined as a violent behaviour of the liquid contents in CCS due to external forced motions and thermal insulation keeping natural gas below its boiling point. Among different LNG CCS types such as independent B-type and membrane ones, Mark III CCS is considered in this paper to perform its strength assessment. Mark III CCS plate is designed and constructed by stacking various non-metallic engineering materials such as plywood, triplex, reinforced PU foam that are supported by series of mastic upon inner steel hull structure. From the viewpoint of structural analysis, this plated structure is treated as a laminated composite structure showing complex structural behaviour under external load. Advanced finite element models of Mark III CCS plate is generated and used in conjunction with ultimate strength based failure criteria from laminated composite mechanics for the strength assessment. The strength assessment is performed within the initial failure state of Mark III CCS plate. Results provide failure details such as failure locations and loads. Finally obtained results are reviewed using the loads from acceptance criteria suggested by classification.

Electronic state calculation of ceramics by $DV-X\;{\alpha}$ cluster method

  • Adachi, Hirohiko
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1994년도 추계 학술발표 강연 및 논문 개요집
    • /
    • pp.1-1
    • /
    • 1994
  • ;The electronic state calculations for various types of ceramic materials have beell performed by the use of $DV-X\;{\alpha}$ cluster method. The molecular orbital levels and wave functions for model clusters have been computed to study the electronic properties ami chemical bonding of the ceramics. For ${\beta}-sialon(Si_{6-z}Al_zO_zN_{8-z})$ which is a high temperature structural material based on ${\beta}-Si_3N_4$, we have made model cluster calculations to estimate the strength of chemical bonding between atoms by the Mulliken population analysis. It is found that the covalent bonding between Si and N atoms is very strong in pure ${\beta}-Si_3N_4$, but the covalency around solute atom is considerably weakened when Si atom is substituted by AI. This tendency is enhanced by an additional substitution of oxygen atom for N. The result calculated can well explain the experimental data of changes in mechanical properties such as the reductions of Young's modulus and Vickers hardness with increment of z-value in ${\beta}-sialon$. Various model clusters for transition metal oxides which show many interesting physical and chemical properties have also been calculated. High-valent perovskite-type iron oxides EMFe0_3E(M=Ca and Sr) possess very interesting magnetic and chemical properties. In these oxides, iron exists as $Fe^{4+}$ state, but the experimental measurement of Mossba~er effect suggests that disproportionation $2Fe^{4+}=Fe^{3+}+Fe^{5+}$ takes place for $CaFe0_3$ at low temperatures. The model cluster calculations for these compounds indicated the existence of considerably strong covalent bonding of Fe-O. The calculations of hyperfine interaction at iron neucleus show very good agreement with the experimental Mossbauer measurements. The result calculated also implies that the disproportionation reaction is strongly possible by assuming the quenching of breathing phonon mode at low temperatures.tures.

  • PDF

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Biomechanical Analysis of Biodegradable Cervical Plates Developed for Anterior Cervical Discectomy and Fusion

  • Cho, Pyung Goo;Ji, Gyu Yeul;Park, Sang Hyuk;Shin, Dong Ah
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1092-1099
    • /
    • 2018
  • Study Design: In-vitro biomechanical investigation. Purpose: To evaluate the biomechanical effects of the degeneration of the biodegradable cervical plates developed for anterior cervical discectomy and fusion (ACDF) on fusion and adjacent levels. Overview of Literature: Biodegradable implants have been recently introduced for cervical spine surgery. However, their effectiveness and safety remains unclear. Methods: A linear three-dimensional finite element (FE) model of the lower cervical spine, comprising the C4-C6 vertebrae was developed using computed tomography images of a 46-year-old woman. The model was validated by comparison with previous reports. Four models of ACDF were analyzed and compared: (1) a titanium plate and bone block (Tita), (2) strong biodegradable plate and bone block (PLA-4G) that represents the early state of the biodegradable plate with full strength, (3) weak biodegradable plate and bone block (PLA-1G) that represents the late state of the biodegradable plate with decreased strength, and (4) stand-alone bone block (Bloc). FE analysis was performed to investigate the relative motion and intervertebral disc stress at the surgical (C5-C6 segment) and adjacent (C4-C5 segment) levels. Results: The Tita and PLA-4G models were superior to the other models in terms of higher segment stiffness, smaller relative motion, and lower bone stress at the surgical level. However, the maximal von Mises stress at the intervertebral disc at the adjacent level was significantly higher in the Tita and PLA-4G models than in the other models. The relative motion at the adjacent level was significantly lower in the PLA-1G and Bloc models than in the other models. Conclusions: The use of biodegradable plates will enhance spinal fusion in the initial stronger period and prevent adjacent segment degeneration in the later, weaker period.