• Title/Summary/Keyword: FE models

Search Result 621, Processing Time 0.025 seconds

Pedogenesis of Forest Soils(Kandiustalfs) Derived from Granite Gneiss in Southern Part of Korea (우리나라 남부지역(南部地域) 화강편마암질(花崗片麻巖質) 삼림토양(森林土壤)의 토양생성(土壤生成))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.186-199
    • /
    • 1997
  • The soils derived from granite gneiss occupy almost one third of the land area in Korea. The soils under forest vegetation, formed on granite gneiss, in Sun chon-shi, Chollanam-do in southern part of Korea, were studied to evaluate the weathering and the transformation of primary minerals into secondary minerals, clay minerals. The studied soils contained large amounts of ferromagnesian minerals, weathered biotites and were well weathered, strongly acid and low in organic matters and in ration exchange capacity. The clay contents in the Bt horizon were almost two times higher than those in the C horizon. The O horizon had a thin layer which consisted of a little decomposed plant components with a granic fabric and high porosity, and showed the micromorphological characteristics of moder humus. The related distribution pattern of the E horizon were enaulic and large amounts of silts and small amounts of sand grains were another characteristics of the E horizon. The most striking micromorphological features were multilaminated clay coating and infillings in the voids in the Bt and C horizons, and generally limpid ferriargillans ejected from the biotites and imparted red color to the soils in the Bt horizon. High clay contents in the Bt horizon was not only due to clay translocation, but also due to intensive in situ mineral weathering in this horizon. The most significant pedogenic process, revealed by the petrographic microscope and SEM, was the formation of iron oxides from biotites, the formation of tubular halloysites and the weathering models of biotites; wedge weathering and layer weathering. The thick coating on the weathering biotites showed the characteristics of the weathering process and the synthetic hematites were revealed in clays by TEM. Total chemical analysis of clays revealed extensive loss of Ca, and Na and the concentration of Fe and Al. Mineralogical studies of clays by XRD showed that micas were almost completely weathered to kaolinite, vermiculite-kaolinite intergrade, hematite, gibbsite, while halloysites from other primary minerals. Some dioctahedral mica appeared to be resistant in the soils. Parent rock of the soils contained a considerable amounts of biotites and this forest soils showed especially a dominant characteristics of biotite weathering.

  • PDF

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Quantification of Soil Properties using Visible-NearInfrared Reflectance Spectroscopy (가시·근적외 분광 스펙트럼을 이용한 토양 이화학성 추정)

  • Choe, Eunyoung;Hong, S. Young;Kim, Yi-Hyun;Song, Kwan-Cheol;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.522-528
    • /
    • 2009
  • This study focused on establishing prediction models using visible-near infrared spectrum to simultaneously detect multiple components of soils and enhancing the performance quality by suitably transformed input spectra and classification of soil spectral types for prediction model input. The continuum-removed spectra showed significant result for all cases in terms of soil properties and classified or bulk predictions. The prediction model using classified soil spectra at an absorption peak area around 500nm and 950nm efficiently indicating soil color showed slightly better performance. Especially, Ca and CEC were well estimated by the classified prediction model at $R^{2}$ > 0.8. For organic carbon, both classified and bulk prediction model had a good performance with $R^{2}$ > 0.8 and RPD> 2. This prediction model may be applied in global soil mapping, soil classification, and remote sensing data analysis.

Effect of Cordycepin-Enriched Cordyceps militaris Powder on Tissues Lipid Peroxidation and Antioxidative Activity in Orotic Acid-Induced Fatty Liver Model Rats (Cordycepin이 orotic acid 유발 지방간 흰쥐의 과산화 지질 농도 및 항산화 활성에 미치는 영향)

  • Ahn, Hee-Young;Cha, Jae-Young;Heo, Su-Jin;Kang, Min-Jeong;Lee, Jae-Hong;Park, Sang-Hyun;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1407-1414
    • /
    • 2011
  • This study is aimed to evaluate the protective effect of Cordycepin-enriched Cordyceps militaris (CM${\alpha}$) strain on orotic acid (OA)-induced fatty liver in rats. OA treatment induced the retardation of body weight gain and enlargement of the liver. The activities of liver marker enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), Alk. phosphatase and Cholinesterase were increased when treated with OA, but these parameters were significantly decreased in the CM${\alpha}$ group. The current study observed significant elevations of thiobarbituric acid-reactive substance (TBARS) levels. However, among the OA groups, the CM${\alpha}$ group showed significantly low TBARS levels of hepatic homogenate. The OA group resulted in a significant decrease in the levels of plasma and hepatic glutathione, but these reductions were significantly increased in the CM${\alpha}$ group. These effects were more pronounced in the CM${\alpha}$ group than in the PJ or CM groups in Orotic acid treated rats. Accordingly, Cordycepin-enriched Cordyceps militaris (CM${\alpha}$) may be an ideal candidate for hepatoprotective effects in animal models.

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.