• 제목/요약/키워드: FE models

검색결과 626건 처리시간 0.16초

리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성 (Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs)

  • 한택희;서주형;염응준;강영종
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.737-746
    • /
    • 2006
  • 본 연구에서는 리브로 보강된 GFRP(Glass Fiber Reinforced Plastic) 관로의 탄성 좌굴 강도를 산정하였다. 보강된 리브의 두께, 높이, 배치 간격은 관로의 좌굴 강도에 영향을 미치는 주요 인자이다. 또한, GFRP 재료는 이방성 재료이므로, 재료의 방향별 강성 또한 관로의 좌굴강도에 영형을 미치는 인자로서 고려되어야할 부분이다. 이러한 매개변수를 적용하여, 직교 이방성 재료로 구성된 리브 보강 관로의 좌굴 강도를 유한요소 해석을 이용하여 매개변수를 수행하고, 회귀분석을 통하여 좌굴 강도 산정을 위한 간략식을 제시하였다.

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

Development of Analytical Models for Switched Reluctance Machine and their Validation

  • Jayapragash, R.;Chellamuthu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.990-1001
    • /
    • 2015
  • This paper presents analysis of Switched Reluctance Machine (SRM) using Geometry Based Analytical Model (GBAM), Finite Element Analysis (FEA) and Fourier Series Model (FSM) with curve fitting technique. Further a Transient Analysis (TA) technique is proposed to corroborate the analysis. The main aim of this paper is to give in depth procedure in developing a Geometry Based Analytical Model of Switched Reluctance Machine which is very accurate and simple. The GBAM is developed for the specifications obtained from the manufacturer and magnetizing characteristic of the material used for the construction. Precise values of the parameters like Magneto Motive Force (MMF), flux linkage, inductance and torque are obtained for various rotor positions taking into account the Fringing Effect (FE). The FEA model is developed using MagNet7.1.1 for the same machine geometry used in GBAM and the results are compared with GBAM. Further another analytical model called Fourier Series Model is developed to justify the accuracy of the results obtained by the methods GBAM and FEA model. A prototype of microcontroller based SRM drive system is constructed for validating the analysis and the results are reported.

열간 사상압연에서 스트립 폭 퍼짐의 공정변수 영향 및 예측에 관한 연구 (The Effect of Process Variables on Strip Width Spread and Prediction in Hot Finish Rolling)

  • 전준배;이경훈;한진규;정진우;김형진;김병민
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.235-241
    • /
    • 2016
  • Dimensional accuracy of hot coil is improved by precise control of thickness profiles, flatness, width and winding profile. Especially, precise width control is important because yield could be increased significantly. Precise width control can be improved by predicting the amount of width spread. The purpose of this study is to develop the advanced prediction model for width spread in hot finish rolling for controlling width precisely. FE-simulations were performed to investigate the effect of process variables on width spread such as reduction ratio, forward and backward tension and initial width at each stand. From the statistical analysis of simulated data, advanced model was developed based on the existing models for strip width spread. The experimental hot rolling trials showed that newly developed model provided fairly accurate predictions on the strip width spread during the whole hot finishing rolling process.

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

타이어 고무배합물의 초탄성을 고려한 레이디얼 타이어의 팽창에 관한 유한요소해석 (F.E. Analysis of the Radial Tire Inflation Using the Hyperelastic Properties of Rubber Compounds Sampled from a Tire)

  • 김용우;김종국
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.125-134
    • /
    • 2003
  • In this study, Mooney-Rivlin 1st model and Mooney-Rivlin 3rd model are adopted as strain energy density functions of the rubber compounds of a radial tire. It is shown that the FE analysis using Mooney-Rivlin models for rubber compounds may provide good approximations by employing the appropriate strain range of experimental stress-strain data in a way to describe the stress-strain relationship accurately. Especially, Mooney-Rivlin 3rd model gives an accurate stress-strain relationship regardless of the fitting strain range used within the strain of 100%. The static nonlinear FE analysis of a tire inflation is performed by employing an axisymmetric model, which shows that the outside shapes of the tire before and after inflating the tire agree well with those of the real tire. Additionally, the deformations at crown center and turning point on sidewall, distribution of belt cord force, interlaminar shear strain are predicted in terms of variation of belt cord angle which is known as the most influential factor in inflation behavior of a tire.

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.