• Title/Summary/Keyword: FE models

Search Result 621, Processing Time 0.029 seconds

Monitoring of antioxidant activities with dried Gugija (Lycium chinensis Mill) extraction (건조 구기자의 추출에 따른 항산화 효능 모니터링)

  • Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.859-865
    • /
    • 2016
  • Thise study aimed to determine the optimum antioxidant extraction conditions of dried Gugija (Lycium chinensis Mill). To determine the operational parameters, including ethanol concentration ($X_1$, 0~80%) and extraction time ($X_2$, 1~5 hr), a response surface methodology was applied to monitor brown color intensity, total phenolic compounds, ABTS radical scavenging activity, and $Fe^{2+}$ chelating activity. Coefficients of determinations ($R^2$) of the models were 0.8486~0.9214 (p<0.05~0.1) in dependent parameters. Brown color intensity of Gugija extracts reached a maximum of 0.75 (OD in 420 nm) under extraction conditions of 2.88 hr in 78.10% ethanol. Total phenolic compounds reached a maximum of $2,355{\mu}g$ under extraction conditions of 4.94 hr in 30.17% ethanol. ABTS radical scavenging activity was 13.83% at 4.61 hr and 16.21% ethanol. $Fe^{2+}$ chelating activity showed a maximum of 58.54% under extraction conditions of 3.39 hr in 0.76% ethanol. Optimum extraction conditions (5 hr extraction in 15% ethanol) were obtained by superimposing the contour maps with regards to total phenolic compounds, ABTS radical scavenging activity, and $Fe^{2+}$ chelating activity of dried Gugija. Maximum values of total phenolic compounds, ABTS radical scavenging activity, and $Fe^{2+}$ chelating activity under optimum extraction condition were $2,397{\mu}g$, 15.62% and 54.78%, respectively.

Propagation of Structural Waves along Waveguides with Non-Uniformities Using Wavenumber Domain Finite Elements (국부적 불연속을 갖는 도파관을 따라 전파되는 파동에 대한 파수 영역 유한 요소 해석)

  • Ryue, Jungsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.191-199
    • /
    • 2014
  • Wave reflection and transmission characteristics in waveguides are an important issue in many engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using a beam theory. For higher frequency applications, a method named a combined spectral super element and finite element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE, which improves performance of the combined SSE/FE method in terms of the modeling effort and computing time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed plate, the propagation characteristics are investigated in terms of the propagation constant.

Optimization of Ferric Chloride Induced Carotid Artery Thrombosis Model in a Rat: Effect of Ginkgo biloba Extracts

  • Lee, In Sun;Choi, SeungGu;Jeon, Won Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.4
    • /
    • pp.179-187
    • /
    • 2011
  • Animal models are important tools in thrombosis research and preclinical drug development. In recent studies, ferric chloride ($FeCl_3$) has been widely used to induce arterial thrombosis in a variety of species. The purpose of this study was to find an optimal concentration of $FeCl_3$ and validate this model suited better for thrombosis research. A small piece of filter paper, soaked in $FeCl_3$ solution (10, 20 or 35%, v/v, in distilled water) was topically applied on the carotid artery of SD rats to measure the time to occlusion (TTO) and thrombus weight (TW) to ascertain 35%, as an optimal $FeCl_3$ concentration ($8.63{\pm}0.92min$; p =0.000, $0.79{\pm}0.03mg/mm$; p =0.000, respectively). To validate this experimental model, Ginkgo biloba special extract EGb761 (5, 10 or 30 mg/kg) as a reference agent administered by peritoneal route for 1h prior to the induction of thrombosis, showed significantly delayed TTO in a dose dependent manner ($18.50{\pm}2.17$, $29.17{\pm}1.83$, and $38.00{\pm}1.79min$, respectively) and significantly reduced TW and repaired collagen fibre in the injured vessel compare to vehicle group. Our results provide a simple, reproducible and well controlled in vivo screening system to induce thrombosis in rats by the topical application of 35% $FeCl_3$ to assess the efficacy of the new anti-thrombotic agents.

  • PDF

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

The development and application of on-line model for the prediction of roll force in hot strip rolling (얼간 사상 압연중 압하력 예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication

  • Kim, Hee-Sun;Park, Jae-Yong;Kim, Na-Eun;Shin, Yeong-Soo;Park, Ji-Man;Chun, Youn-Sic
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.218-226
    • /
    • 2012
  • PURPOSE. The purpose of this study was to propose finite element (FE) modeling methods for predicting stress distributions on teeth and mandible under chewing action. MATERIALS AND METHODS. For FE model generation, CT images of skull were translated into 3D FE models, and static analysis was performed considering linear material behaviors and nonlinear geometrical effect. To find out proper boundary and loading conditions, parametric studies were performed with various areas and directions of restraints and loading. The loading directions are prescribed to be same as direction of masseter muscle, which was referred from anatomy chart and CT image. From the analysis, strain and stress distributions of teeth and mandible were obtained and compared with experimental data for model validation. RESULTS. As a result of FE analysis, the optimized boundary condition was chosen such that 8 teeth were fixed in all directions and condyloid process was fixed in all directions except for forward and backward directions. Also, fixing a part of mandible in a lateral direction, where medial pterygoid muscle was attached, gave the more proper analytical results. Loading was prescribed in a same direction as masseter muscle. The tendency of strain distributions between the teeth predicted from the proposed model were compared with experimental results and showed good agreements. CONCLUSION. This study proposes cost efficient FE modeling method for predicting stress distributions on teeth and mandible under chewing action. The proposed modeling method is validated with experimental data and can further be used to evaluate structural safety of dental prosthesis.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

Switching Dynamics Analysis by Various Models of Hf0.5Zr0.5O2 Ferroelectric Thin Films (Hf0.5Zr0.5O2 강유전체 박막의 다양한 분극 스위칭 모델에 의한 동역학 분석)

  • Ahn, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • Recent discoveries of ferroelectric properties in ultrathin doped hafnium oxide (HfO2) have led to the expectation that HfO2 could overcome the shortcomings of perovskite materials and be applied to electron devices such as Fe-Random access memory (RAM), ferroelectric tunnel junction (FTJ) and negative capacitance field effect transistor (NC-FET) device. As research on hafnium oxide ferroelectrics accelerates, several models to analyze the polarization switching characteristics of hafnium oxide ferroelectrics have been proposed from the domain or energy point of view. However, there is still a lack of in-depth consideration of models that can fully express the polarization switching properties of ferroelectrics. In this paper, a Zr-doped HfO2 thin film based metal-ferroelectric-metal (MFM) capacitor was implemented and the polarization switching dynamics, along with the ferroelectric characteristics, of the device were analyzed. In addition, a study was conducted to propose an applicable model of HfO2-based MFM capacitors by applying various ferroelectric switching characteristics models.

Fabrication of Iron Oxide Nanotubes by Anodization for Phosphorus Adsorption in Water (양극산화 공정을 이용한 Iron Oxide Nanotubes의 제조 및 수중 인 흡착)

  • Lee, Won-Hee;Lim, Han-Su;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.691-698
    • /
    • 2016
  • This study was carried out to investigate the characterization of iron oxide nanotubes (INTs) by anodization method and applied adsorption isotherms and kinetic models for phosphate adsorption. SEM analysis was conducted to examine the INTs surface formation. Further XRD and XPS analysis were performed to observe the crystal structure of INTs before and after phosphate adsorption. AFM analysis was conducted to determine of Fe foil surface before and after anodization. Phosphate stock solution for adsorption experiment was prepared by $KH_2PO_4$. The batch experiment was conducted using 20 ml phosphate stock solution and $40cm^3$ of INTs in 50 ml conical tube. Adsorption isotherms were applied Langmuir and Freundlich models for adsorption equilibrium test of INTs. Pseudo first order and pseudo second order models were applied for interpretation of adsorption rate by reaction time. The determination coefficient ($R^2$) values of Langmuir and Freundlich models were 0.9157 and 0.8876 respectively.

A response surface modelling approach for multi-objective optimization of composite plates

  • Kalita, Kanak;Dey, Partha;Joshi, Milan;Haldar, Salil
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.455-466
    • /
    • 2019
  • Despite the rapid advancement in computing resources, many real-life design and optimization problems in structural engineering involve huge computation costs. To counter such challenges, approximate models are often used as surrogates for the highly accurate but time intensive finite element models. In this paper, surrogates for first-order shear deformation based finite element models are built using a polynomial regression approach. Using statistical techniques like Box-Cox transformation and ANOVA, the effectiveness of the surrogates is enhanced. The accuracy of the surrogate models is evaluated using statistical metrics like $R^2$, $R^2{_{adj}}$, $R^2{_{pred}}$ and $Q^2{_{F3}}$. By combining these surrogates with nature-inspired multi-criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at inexpensively producing a host of optimal solutions.