• Title/Summary/Keyword: FE models

Search Result 621, Processing Time 0.026 seconds

Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies

  • Mostafa, Mostafa M.A.;Wu, Tao;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.223-239
    • /
    • 2021
  • This paper presents the analytical modeling and finite element (FE) analysis, using ABAQUS software, of the new types of steel reinforced lightweight aggregate concrete (SRLAC) columns with cross-shaped (+shaped and X-shaped) steel section, using proposed three analytical and two FE models in total. The stress-strain material models for different components in the columns, including the confined zones of the lightweight aggregate concrete (LWAC) using three and four concrete zones divisions approaches and with and without taking into account the stirrups reaction effect, are established first. The analytical models for determining the axial load-deformation behavior of the SRLAC columns are drawn based on the materials models. The analytical and FE models' results are compared with previously reported test results of the axially loaded SRLAC columns. The proposed analytical and FE models accurately predict the axial behavior and capacities of the new types of SRLAC columns with acceptable agreements for the load-displacement curves. The LWAC strength, steel section ratio, and steel section configuration affect the contact stress between the concrete and steel sections. The average ratios of the ultimate test load to the three analytical models and FEA model loads, Put /Pa1, Put /Pa2, Put /Pa3, and Put /PFE1, for the tested specimens are 0.96, 1.004, 1.016, and 1.019, respectively. Finally, the analytical parametric studies are also studied, in terms of the effects of confinement, LWAC strength, steel section ratio, and the reinforcement ratio on the axial capacity of the SRLAC column. When concrete strength, confinements, area of steel sections, or reinforcement bars ratio increased, the axial capacities increased.

3D FE modeling considering shear connectors representation and number in CBGB

  • Abbu, Muthanna A.;Ekmekyapar, Talha A.;Ozakca, Mustafa A.
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.237-252
    • /
    • 2014
  • The use of composite structures is increasingly present in civil building works. Composite Box Girder Bridges (CBGB), particularly, are study of effect of shear connector's numbers and distribution on the behavior of CBGBs is submitted. A Predicti structures consisting of two materials, both connected by metal devices known as shear connectors. The main functions of these connectors are to allow for the joint behavior of the girder-deck, to restrict longitudinal slipping and uplifting at the element's interface and to take shear forces. This paper presents 3D numerical models of CBGBs to simulate their actual structural behavior, with emphasis on the girder-deck interface. Additionally, a Prediction of several FE models is assessed against the results acquired from a field test. A number of factors are considered, and confirmed through experiments, especially full shear connections, which are obviously essential in composite box girder. A good representation for shear connectors by suitable element type is considered. Numerical predictions of vertical displacements at critical sections fit fairly well with those evaluated experimentally. The agreement between the FE models and the experimental models show that the FE model can aid engineers in design practices of box girder bridges. Preliminary results indicate that number of shear studs can be significantly reduced to facilitate adoption of a new arrangement in modeling CBGBs with full composition. However, a further feasibility study to investigate the practical and economic aspects of such a remedy is recommended, and it may represent partial composition in such modeling.

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Development of FE-SEA Hybrid Model for the Prediction of Vehicle Structure-borne Noise at Mid-frequencies (승용차량의 중주파수 대역 구조기인 소음예측을 위한 FE-SEA 하이브리드 모델 개발)

  • Yoo, Ji Woo;Chae, Ki-Sang;Charpentier, A.;Lim, Jong Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.606-612
    • /
    • 2014
  • Vehicle simulation models for noise and vibration prediction have been developed so far generally in two schemes. One is FE models generally used for problems below 200 Hz such as booming noise, and the other is SEA models for high frequencies of more than 1 kHz, representatively related to sound packages. There have been many researches to develop a simulation model for 200~1000 Hz, so-called mid-frequency region, and this paper shows one practical result that covers the trimmed body of a sedan vehicle. The simulation model is developed based on an FE model, and then FE elements at some areas are substituted with SEA elements to reduce DOFs. SEA panels are described by modal density, radiation efficiency, stiffness and damping characteristics that are found from some numerical assessments. Sound packages are modeled similarly as a conventional SEA model. The results obtained from the hybrid model were compared to experimental results. Predicted pressure and vibrational velocity generally show a good agreement. The developed simulation model and related technology are successfully being used in vehicle development process.

Nonlinear structural finite element model updating with a focus on model uncertainty

  • Mehrdad, Ebrahimi;Reza Karami, Mohammadi;Elnaz, Nobahar;Ehsan Noroozinejad, Farsangi
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.549-580
    • /
    • 2022
  • This paper assesses the influences of modeling assumptions and uncertainties on the performance of the non-linear finite element (FE) model updating procedure and model clustering method. The results of a shaking table test on a four-story steel moment-resisting frame are employed for both calibrations and clustering of the FE models. In the first part, simple to detailed non-linear FE models of the test frame is calibrated to minimize the difference between the various data features of the models and the structure. To investigate the effect of the specified data feature, four of which include the acceleration, displacement, hysteretic energy, and instantaneous features of responses, have been considered. In the last part of the work, a model-based clustering approach to group models of a four-story frame with similar behavior is introduced to detect abnormal ones. The approach is a composition of property derivation, outlier removal based on k-Nearest neighbors, and a K-means clustering approach using specified data features. The clustering results showed correlations among similar models. Moreover, it also helped to detect the best strategy for modeling different structural components.

Sensitivity Analysis of 3-Dimensional FE Models for Jointed Concrete Pavements (줄눈 콘크리트포장 3차원 유한요소모델의 민간도 분석)

  • Yoo, Taeseok;Sim, Jongsung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.435-444
    • /
    • 2006
  • This paper investigates the effect of 3-dimensional FE models to evaluation results of jointed concrete pavements which is back-calculated by AREA method. Sensitivity of 3-dimensional FE models developed to simulate the behavior of real jointed concrete pavement are analyzed after compared with 2-dimensional FE models using ILLISLAB. In comparison with 2-dimensional models, influence of concrete contraction under loading plate and base layer on surface deflections is more than that of loading configuration. Deflections at 3-dimensional model between linear and nonlinear temperature distribution under same temperature difference are similar, but noticeable differences are investigated in low elastic modulus of foundations. Dynamic deflections under loading plate are larger than static deflections in high elastic modulus of foundation, but smaller in low elastic modulus. Lower dynamic modulus of subgrade reactions are backcalculated by dynamic deflections than by static deflections. But reverse trend is investigated in the backcalculated elastic modulus of concrete which describes trends of the field backcalculation values calculated from AREA method.

Experimental and numerical study of large high strength bolt shear connector embedded in HFRC

  • Yuliang He;Zhengxin Wang;Weiming Wu;Ying Yang;Yiqiang Xiang
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.197-213
    • /
    • 2023
  • To investigate the static properties of large high strength bolt shear connector in hybrid fiber-reinforced concrete (HFRC) and normal concrete (NC), eight push-out test specimens with single/double nut and HFRC/NC slabs were designed and push-out tests were conducted. A fine 3D nonlinear finite element (FE) model including HFRC constitutive model was established by using ANSYS 18.0, and the test results were used to verify FE models of the push-out test specimens. Then a total of 13 FE models were analyzed with various parameters including fiber volume fractions of HFRC, bolt diameter and thickness of steel flange. Finally, the empirical equations considering the contribution of polypropylene fiber (PF) and steel fiber (SF) obtained from the regression of the test results and FE analysis were recommended to evaluate the load-slip curve and ultimate capacity of the large high strength bolt shear connector embedded in HFRC/NC.

Strength and stiffness modeling of extended endplate connections with circular and rectangular bolt configurations

  • Hantouche, Elie G.;Mouannes, Elie N.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.323-352
    • /
    • 2016
  • The results of a series of finite element (FE) simulations and experimental studies are used to develop strength and stiffness models that predict the failure capacity and response characteristics of unstiffened extended endplate connections with circular and rectangular bolt configurations associated with deep girders. The proposed stiffness models are composed of multi-linear springs which model the overall extended endplate/column flange system deformation and strength of key-components. Comparison of model predictions with FE and experimental results available in the literature show that the proposed models accurately predict the strength and the response of extended endplate/column system with circular and rectangular bolt configurations. The effect of the bolt configuration (circular and rectangular) on the prying phenomenon encountered in the unstiffened extended endplate/column system was investigated. Based on FE results, extended endplate with circular bolt configuration has a more ductile behavior and exhibits higher total prying forces. The proposed models can be used to design connections that cover all possible failure modes for extended endplate with circular bolt configuration. This study provides guidelines for engineers to account for the additional forces induced in the tension bolts and for the maximum rotational capacity demand in the connection which are required for seismic analysis and design.

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

Evaluation of Thermal Characteristics for a Feeding Axis of Machine Tools Using Finite Element Analysis (유한 요소 해석을 활용한 공작기계 이송축 열적 특성 평가)

  • Lee, Chang Hoon;Choi, Jin Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.380-387
    • /
    • 2013
  • In this study, two finite element (FE) models were developed to evaluate the thermal characteristics of a feeding axis of a CNC lathe. One was used for analysis of heat transfer to identify the temperature distribution of the feeding axis and then, the other was used for analysis of thermal deformation to evaluate its structural behavior based on the temperature distribution. The FE models were based on the test standard for the axial thermal displacement. The feeding velocity was composed of three steps: the ascending, constant, and descending velocities. Therefore, the heat generation and convection coefficient were calculated for each velocity and applied to the thermal FE model. The convection coefficient for the ball screw rotation was based on an experimental equation. The result of the analytical thermal displacement was compared with that of the experimental displacement to verify the finite element models.