• 제목/요약/키워드: FE investigation

검색결과 527건 처리시간 0.03초

Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향 (Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys)

  • 김철효;이정무;김경현;김인배
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.

Protein-Directed Synthesis of γ-Fe2O3 Nanoparticles and Their Magnetic Properties Investigation

  • Soleyman, Rouhollah;Pourjavadi, Ali;Masoud, Nazila;Varamesh, Akbar;Sattari, Abolfazl
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1375-1378
    • /
    • 2014
  • In this study, maghemite (${\gamma}-Fe_2O_3$) nanoparticles were produced using gelatin protein as an effective mediator. Size, shape, surface morphology and magnetic properties of the prepared ${\gamma}-Fe_2O_3$ nanoparticles were characterized using XRD, FT-IR, TEM, SEM and VSM data. The effects of furnace temperature and time of heating together with the amount of gelatin on the produced gelatin-$Fe_3O_4$ nanocomposite were examined to prove the fundamental effect of gelatin; both as a capping agent in the nanoscale synthesis and as the director of the spinel ${\gamma}-Fe_2O_3$ synthesis among possible $Fe_2O_3$ crystalline structures.

Numerical investigation of continuous composite girders strengthened with CFRP

  • Samaaneh, Mohammad A.;Sharif, Alfarabi M.;Baluch, Mohammed H.;Azad, Abul K.
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1307-1325
    • /
    • 2016
  • Nonlinear behavior of two-span, continuous composite steel-concrete girders strengthened with Carbon Fiber Reinforced Polymers (CFRP) bonded to the top of concrete slab over the negative moment region was evaluated using a non-linear Finite Element (FE) model in this paper. A three-dimensional FE model of continuous composite girder using commercial software ABAQUS simulated and validated with experimental results. The interfacial regions of the composite girder components were modeled using suitable interface elements. Validation of the proposed numerical model with experimental data confirmed the applicability of this model to predict the loading history, strain level for the different components and concrete-steel relative slip. The FE model captured the different modes of failure for the continuous composite girder either in the concrete slab or at the interfacial region between CFRP sheet and concrete slab. Through a parametric study, the thickness of CFRP sheet and shear connection required to develop full capacity of the continuous composite girder at negative moment zone have been investigated. The FE results showed that the proper thickness of CFRP sheet at negative moment region is a function of the adhesive strength and the positive moment capacity of the composite section. The shear connection required at the negative moment zone depends on CFRP sheet's tensile stress level at ultimate load.

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy;Hong, Soon-Ku;Ngo, Trong Si;Lee, Jeongkuk;Park, Yun Chang;Hong, Sun Ig;Na, Young-Sang
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1285-1292
    • /
    • 2018
  • Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

The investigation of the carbon on irradiation hardening and defect clustering in RPV model alloy using ion irradiation and OKMC simulation

  • Yitao Yang;Jianyang Li;Chonghong Zhang
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2071-2078
    • /
    • 2024
  • The precipitation of solutes is a major cause of irradiation hardening and embrittlement limiting the service life of reactor pressure vessel (RPV) steels. Impurities play a significant role in the formation of precipitation in RPV materials. In this study, the effects of carbon on cluster formation and irradiation hardening were investigated in an RPV alloy Fe-1.35Mn-0.75Ni using C and Fe ions irradiation at 290 ℃. Nanoindentation results showed that C ion irradiation led to less hardening below 1.0 dpa, with hardening continuing to increase gradually at higher doses, while it was saturated under Fe ion irradiation. Atom probe tomography revealed a broad size distribution of Ni-Mn clusters under Fe ion irradiation, contrasting a narrower size distribution of small Ni-Mn clusters under C ion irradiation. Further analysis indicated the influence of carbon on the cluster formation, with solute-precipitated defects dominating under C ion irradiation but interstitial clusters dominating under Fe ion irradiation. Simulations suggested that carbon significantly affected solute nucleation, with defect clusters displaying smaller size and higher density as carbon concentration increased. The higher hardening at doses above 1.0 dpa was attributed to a substantial increase in the number density of defect clusters when carbon was present in the matrix.

Effects of Ni Addition on the Microstructures and Magnetic Properties of Fe70-xPd30Nix High-Temperature Ferromagnetic Shape Memory Alloys

  • Lin, Chien-Feng;Yang, Jin-Bin
    • Journal of Magnetics
    • /
    • 제17권2호
    • /
    • pp.86-95
    • /
    • 2012
  • This study investigated the effects of adding a third alloying element, Ni, to create $Fe_{70-x}Pd_{30}Ni_x$ (x = 2, 4, 6, 8 at.% Ni) ferromagnetic shape memory alloys (FSMAs). The Ni replaced a portion of the Fe. The $Fe_{70-x}Pd_{30}Ni_x$ alloys were homogenized through hot and cold forging to gain a ~38% reduction in thickness, next they were solution-treated (ST) with annealing recrystallization at $1100^{\circ}C$ for 8 h and quenched in ice brine, and then aged at $500^{\circ}C$ for 100 h. Investigation of the microstructures and magnetostriction indicated that the greater Ni amount in the $Fe_{70-x}Pd_{30}Ni_x$ alloys reduced saturation magnetostriction at room temperature (RT). It was also observed that it was more difficult to generate annealed recrystallization. However, with greater Ni addition into the $Fe_{70-x}Pd_{30}Ni_x$ (x = 6, 8 at.% Ni) alloys, the $L1_0+L1_m$ twin phase decomposition into stoichiometric $L1_0+L1_m+{\alpha}_{bct}$ structures was suppressed after the $500^{\circ}C$/100 h aging treatment. The result was that the $Fe_{70-x}Pd_{30}Ni_x$ (x = 6, 8 at.% Ni) alloys maintained a high magnetostriction and magnetostrictive susceptibility (${\Delta}{\lambda}{_\parallel}{^s}/{\Delta}H$) after the alloys were aged at $500^{\circ}C$ for 100 h. This magnetic property of the $Fe_{70-x}Pd_{30}Ni_x$ (x = 6, 8 at.% Ni) alloys make it suitable for application in a high temperature (T > $500^{\circ}C$) and high frequency environments.

水酸化鐵 懸濁液에서 空氣酸化에 의한 중금속이온의 Ferrite 생성에 관한 연구 (A Study of Ferrite Formation by Aerial Oxidation of Fe$(OH)_2$ Suspension of Aqueous Solution Containing Heave Metal Ions)

  • Lee, Sung Ho;Hyun, Yong Bum;Kim, Soo Saeng
    • 한국환경보건학회지
    • /
    • 제12권1호
    • /
    • pp.1-14
    • /
    • 1986
  • This investigation was carried out on the study of Ferrite formation by aerial oxidation of Fe $(OH)_2$ suspension of aqueous solution containing heavy metal ions. In this study the optimum reactionary condition of the Ferrite formation in Batch reactor wa studied by aerial oxidation which are subjected to various reaction time and temperature, under the different kinds of R(2NaOH/$FeSO_4$) Values, pH, Air flow rate, and $Fe^2+/M^2+$ mole ratio. The optimum condition for the Ferrite formation in Batch reactor was such that residence Time was 90 min., Temperature $65{\circ}$C, pH 11.0, Air flow rate 2.0l/min and $Fe^{2+}/M^{2+}$ mole ratio 4.0, which was observed by X-Ray diffraction analysis. The relation R-value, pH and ORP affecting the formation of Ferrite is that the jump step in pH 11.0, when a amount of NaOH is added, is steady state to the formation of Ferrite. Effect of R-value of $FeSO_4$ and $FeCl_2$ on the formation of Ferrite in different from each other the optimum condition of the in different from each other the optimum condition of the $FeCl_2$ is R-value 0.7, pH 11.0 and the $FeSO_4$ R-value 1.2, pH 11.0.

  • PDF

주파수 특성에 의한 ${\alpha}-Fe_2O_3$ Thermistor의 계면준위 해석 (A Study on The Grain Boundary State of ${\alpha}-Fe_2O_3$ Thermistor by Frequency Properties)

  • 홍형기;강희복;김봉희;최복길;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 1990
  • The addition of titanium has come to produce an increase in the conductivity of ${\alpha}-Fe_2O_3$ and has been shown NTC ( negative temperature coefficient ) characteristics. Titanium enters the ${\alpha}-Fe_2O_3$ lattice substitutionally as $Ti^{4+}$,thus producing an $Fe^{2+}$ and maintaining the average charge per cation at three. Thus the $Fe^{2+}$ acts as a donor center with respect to the surrounding $Fe^{3+}$ ions. The sintering temperature, compacting pressure and sintering tire have an effect on the electrical properties. C-V and other properties have been measured on polycrystalline samples of ${\alpha}-Fe_2O_3$ containing small deviations from stoichiometry and small amounts of added Titanium. This measurment was made in the course of an investigation of the NTC mechanism in oxides whose cations have a partially filled d-level. C-V and frequency properties have been applied to the measurement of the trap barrier properties at the grain boundary. The double Schottky barrier at the grain boundary is the major cause of the NTC mechanism in NTC thermistor of ${\alpha}-Fe_2O_3$ containing N-type impurity.

  • PDF

Melt-Spun Fe-Pr-C 합금의 자기적 특성 조사 (An Investigation on the Magnetic Properties of Melt-Spun Fe-Pr-C Alloys)

  • 장태석;조대형
    • 한국자기학회지
    • /
    • 제7권4호
    • /
    • pp.173-179
    • /
    • 1997
  • 급속응고(melt spinning)법이 Fe-Nd-C의 경우와 마찬가지로 보자력이 높은 Fe-Pr-C 합금을 얻는데에 효과적인지 알아보기 위하여, 급속응고된 Fe-Pr-C 리본에 대하여 냉각속도 및 열처리의 변화에 따른 상, 미세조직 및 자기특성의 변화를 조사하였다. 냉각속도(wheel speed)가 증가할수록 as-spun 리본의 비정질화가 증가하여 40m/s에서 제조된 리본합금은 거의 비정질화하였다. 10m/s에서 제조된 결정질 리본의 상분포는 주소상태의 상분포와 유사하여 .alpha. -Fe가 일차상, Fe$_{17}$Pr$_{2}$C$_{x}$가 이차상으로 존재하였다. 20m/s에서도 결정질이 우세하게 나타나나, 이때에는 .alpha. -Fe의 정출이 약간 억제되는 반면 Fe$_{17}$Pr$_{2}$C$_{x}$의 정출이 현저하였으며, 30m/s에서는 비정질이 우세하여 소량의 결정질만이 존재하였다. 따라서 강자성 Fe$_{14}$Pr$_{2}$C 상은 as-spun 상태에서는 존재하지 않거나 미량이었으며, 주조합금의 경우와 마찬가지로 고상변태를 통해서 얻을 수 있었다. 일반적으로 as-spun리본이 비정질화할수록 비교적 낮은 온도에서 수분의 열처리만으로 완전한 Fe$_{14}$Pr$_{2}$C 상을 얻을 수 있었으며, 결정화가 완벽할수록 Fe$_{14}$Pr$_{2}$C를 얻기 위한 열처리 시간은 증가하였다. 이와 같이 얻은 Fe$_{14}$Pr$_{2}$C는 대부분 1 .mu. m 이하의 미세한 결정립을 가지고 있었으며, as-spun 리본의 비정질화가 완벽한 경우보다 덜 완벽한 경우(30m/s) 또는 결정질과 약간의 비정질이 혼합된 경우 (20m/s)에 열처리에 의한 보자력의 향상이 뚜렷하였다. 일반적으로 변태온도 구역안에서 열처리 온도가 높을수록 10분 이하의 짧은 열처리가 보자력의 향상에 효과적이었다.이었다.

  • PDF