• Title/Summary/Keyword: FE/BE model

Search Result 817, Processing Time 0.026 seconds

Geochemistry, Isotope Properties and U-Pb Sphene Age of the Jeongeup Foliated Granite, Korea (정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀 연대)

  • Jeong, Youn-Joong;Cheong, Chang-Sik;Park, Cheon-Young;Shin, In-Hyun
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • In this paper, we investigate the geochemical and isotope properties of the Jeongeup foliated granite (hereafter, the JFG) in the Jeongeup area, aiming at establishing the movement age of the Honam shear zone by U-Pb sphene geochronology. In the AMF diagram, the JFG corresponds to the calc alkalic rock series, and belongs to the magnesia region in the diagram of silica versus $FeO^{total}/(FeO^{total}+MgO)$. Additionally, in the Rb-Ba-Sr diagram, it is classified as granodiorite and anomalous granite with distinctive negative Eu-anomaly in the REE patterns. According to the silica and trace element contents, the JFG falls on the type VAG+syn-COLG, which implies that this was formed under the circumstance of compressional continental margin or volcanic arc. $^{143}Nd/^{144}Nd$ isotope ratios range from 0.511495 to 0.511783 and $T_{DM}$ are calculated to be about $1.68{\sim}2.36Ga$. U-Pb sphene ages of the JFG are $172.9{\pm}1.7Ma$ and $170.7{\pm}2.8Ma$, based on $^{238}U-^{206}Pb$ and $^{235}U-^{207}Pb$ ages, respectively. Presumably, the dextral ductile shearing in the Jeongeup area has occurred after 173 Ma.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Stiffness Enhancement of Piecewise Integrated Composite Robot Arm using Machine Learning (머신 러닝을 이용한 PIC 로봇 암 강성 향상에 대한 연구)

  • Ji, Seungmin;Ham, Seokwoo;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.303-308
    • /
    • 2022
  • PIC (Piecewise Integrated Composite) is a new concept for designing a composite structure with mosaically assigning various types of stacking sequences in order to improve mechanical properties of laminated composites. Also, machine learning is a sub-category of artificial intelligence, that refers to the process by which computers develop the ability to continuously learn from and make predictions based on data, then make adjustments without further programming. In the present study, the tapered box beam type PIC robot arm for carrying and transferring wide and thin LCD display was designed based on the machine learning in order to increase structural stiffness. Essential training data were collected from the reference elements, which were intentionally designated elements among finite element models, during preliminary FE analysis. Additionally, triaxiality values for each finite element were obtained for judging the dominant external loading type, such as tensile, compressive or shear. Training and evaluating machine learning model were conducted using the training data and loading types of elements were predicted in case the level accuracy was fulfilled. Three types of stacking sequences, which were to be known as robust toward specific loading types, were mosaically assigned to the PIC robot arm. Henceforth, the bending type FE analysis was carried out and its result claimed that the PIC robot arm showed increased stiffness compared to conventional uni-stacking sequence type composite robot arm.

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4 (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4)

  • Blanchet, D.;Golota, A.;Almenar, R.;Lim, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent (폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구)

  • Lee, Jin-Suk;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.

Development of n Hybrid Bumper Beam Using Simulation (시뮬레이션을 이용한 하이브리드 범퍼 빔 개발)

  • Lee, J.K.;Kang, D.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.326-330
    • /
    • 2007
  • Bumper back beam is one of the essential structural components of front-end module. It should be designed to withstand a minor bump in low-speed collision, 2.5 mph crash test for example. And weight reduction is always important problem in the design of almost all the parts in car for energy saving. So, the key issues in shape design of a bumper are weight reduction and the performance in 2.5mph crash test. In this study, a light weight and high performance bumper back beam model was developed using analytical approach based on mechanics and FE simulation together.

  • PDF

Nonlinear dynamic FE analysis of structures consisting of rigid and deformable parts -Part I - Formulation

  • Rojek, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.313-326
    • /
    • 1994
  • Some structures under the action of some specific loads can be treated as consisting of rigid and deformable parts. The paper presents a way to include rigid elements into a finite element model accounting for geometrical and material nonlinearities. Lagrange multipliers technique is used to derive equations of motion for the coupled deformable-rigid system. Solution algorithm based on the elimination of the Lagrangian multipliers and dependent kinematic unknowns at the element level is described. A follow-up paper(Rojek and Kleiber 1993) complements the discussion by giving details of the computer implementation and presenting some realistic test examples.

Time harmonic analysis of dam-foundation systems by perfectly matched layers

  • Khazaee, Adib;Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.349-364
    • /
    • 2014
  • Perfectly matched layers are employed in time harmonic analysis of dam-foundation systems. The Lysmer boundary condition at the truncation boundary of the PML region has been incorporated in the formulation of the dam-foundation FE model (including PML). The PML medium is defined in a way that the formulation of the system can be transformed into time domain. Numerical experiments show that applying Lysmer boundary conditions at the truncation boundary of the PML area reduces the computational cost and make the PML approach a more efficient technique for the analysis of dam-foundation systems.

Sine sweep effect on specimen modal parameters characterization

  • Roy, Nicolas;Violin, Maxime;Cavro, Etienne
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.187-204
    • /
    • 2018
  • The sine sweep base excitation test campaign is a major milestone in the process of mechanical qualification of space structures. The objectives of these vibration tests are to qualify the specimen with respect to the dynamic environment induced by the launcher and to demonstrate that the spacecraft FE model is sufficiently well correlated with the test specimen. Dynamic qualification constraints lead to performing base excitation sine tests using a sine sweep over a prescribed frequency range such that at each frequency the response levels at all accelerometers, load cells and strain gages is the same as the steady state response. However, in practice steady state conditions are not always satisfied. If the sweep rate is too high the response levels will be affected by the presence of transients which in turn will have a direct effect on the estimation of modal parameters. A study funded by ESA and AIRBUS D&S was recently carried out in order to investigate the influence of sine sweep rates in actual test conditions. This paper presents the results of this study along with recommendations concerning the choice of methods.