• Title/Summary/Keyword: FE/BE model

Search Result 819, Processing Time 0.03 seconds

구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감 (Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis)

  • 김진호;배병주;이시복;김태종
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

제안된 마모 모델에 따른 스퀼소음의 시변특성 해석과 실험적 검증 (Time-variety Characteristics Analysis of Squeal Noise due to Proposed Wear Model and Experimental Verification)

  • 이호건;손민혁;서영욱;부광석;김흥섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.89-90
    • /
    • 2008
  • This paper studies the effect of pad at initial stage and wear during braking on the dynamic contact pressure distribution. Wear is influenced by variable factor (contact pressure, sliding speed, radius, temperature) during dynamic braking and variation in contact pressure distribution. Many researchers have conducted complex eigenvalue analysis considering wear characteristic with Lim and Ashby wear map. The conventional analysis method is assumed the pad has smooth and flat surfaces. The purpose of this paper is to validate that wear rate induced by braking is considered for the precise squeal prediction. After obtaining pad wear from experiment, it is incorporated with FE model of brake system. Finally, the comparisons in fugitive nature of squeal will be carried out between the complex eigenvalue analysis and noise dynamometer experiment.

  • PDF

Comparison of the rheologies of laterite and goethite suspensions

  • James, David F.;Blakey, Brian C.
    • Korea-Australia Rheology Journal
    • /
    • 제16권3호
    • /
    • pp.109-115
    • /
    • 2004
  • Comparisons in shear behaviour are made between aqueous suspensions of a laterite ore and aqueous suspensions of pure goethite ($\alpha$-FeOOH), following prior papers in which the rheologies of the two mineral suspensions were characterized individually. Drawing comparisons is appropriate because the ore sample was about 65% goethite and it was originally thought that the pure goethite might serve as a model of the more complex laterite. Viscosity measurements of the two suspensions show that, at the same solids fraction, the goethite suspensions were more viscous by an order of magnitude, even though the goethite particles had much smaller aspect ratios. Similarly, yield stresses for the goethite suspensions were at least an order of magnitude higher. The most significant difference was in transient behaviour. Time-dependent effects were investigated by subjecting a fluid to a step change or a ramp sequence in shear rate, and measuring the resulting shear stress over time. In most cases, transient behaviour could not be detected in the goethite suspensions, whereas stresses in the laterite suspensions relaxed over periods of order 10 seconds. The disparate results indicate that a goethite suspension is a poor model of a laterite slurry.

Nonlinear finite element analysis of high strength concrete slabs

  • Smadi, M.M.;Belakhdar, K.A.
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.187-206
    • /
    • 2007
  • A rational three-dimensional nonlinear finite element model is described and implemented for evaluating the behavior of high strength concrete slabs under transverse load. The concrete was idealized by using twenty-nodded isoparametric brick elements with embedded reinforcements. The concrete material modeling allows for normal (NSC) and high strength concrete (HSC), which was calibrated based on experimental data. The behavior of concrete in compression is simulated by an elastoplastic work-hardening model, and in tension a suitable post-cracking model based on tension stiffening and shear retention models are employed. The nonlinear equations have been solved using the incremental iterative technique based on the modified Newton-Raphson method. The FE formulation and material modeling is implemented into a finite element code in order to carry out the numerical study and to predict the behavior up to ultimate conditions of various slabs under transverse loads. The validity of the theoretical formulations and the program used was verified through comparison with available experimental data, and the agreement has proven to be very good. A parametric study has been also carried out to investigate the influence of different material and geometric properties on the behavior of HSC slabs. Influencing factors, such as concrete strength, steel ratio, aspect ratio, and support conditions on the load-deflection characteristics, concrete and steel stresses and strains were investigated.

인체 경추부의 유한요소 모델링 (Finite element modeling of human cervical spine)

  • 최형연;엄홍원;이태희;강승백;황민철
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.280-283
    • /
    • 1997
  • Human cervical spine has to protect the neural components and vascular structures. Also, it must have the flexibility afforded by an extensive range of motion to integrate the head with the body and environment. Because of these two-sided features, human cervical spine has very complicated shapes and their injury mechanisms are not fully understood yet. We have developed analytical model of human CS by using the finite element method. The model has been verified with in vivo and in vitro experimental results. From the qualitative analysis of simulation results, we were able to explain some of the fundamental mechanisms of neck pain. Further more, this FE model of human CS can be used as an analytical tool or biomechanical design of the clinical device and safety restraints.

  • PDF

반용융 재료의 압출공정에 관한 유한요소해석 (Finite Element Analysis of Extrusion Process in Semi-Solid State)

  • 황재호;고대철;민규식;김병민;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.5-15
    • /
    • 1997
  • It is the objective of this study that by conducting the serni-solid extrusion using A12024, the effect of various process variables on the quality of extruded product and extrusion force is understood. The results of experiment are compared with those of finite element simulation in order to verify the effectiveness of the developed FE-simulation code. In order to simulate densification in the deformation of serni-solid material, the semi-solid material is assumed to be composed of solid region as porous skeleton following compressible visco-plastic model and liquid region following Darcy's equation for the liquid flow saturated in the interstitial space. Then the flow and deformation of the semi-solid alloy are analyzed by coupling the deformation of the porous skeleton and the flow of the eutectic liquid. It is assumed that initial solid fraction is homogeneous. Yield and plastic potential function presented by Kuhn and constitutive model developed by Gunasekera are used for solid skeleton.

  • PDF

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

The Magnetoresistance in Iron-based Superconductors

  • Lv, B.;Xie, R.B.;Liu, S.L.;Wu, G.J.;Shao, H.M.;Wu, X.S.
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.192-195
    • /
    • 2011
  • The phase transition of vortex matter from solid to liquid was studied in iron-based superconductors. Based on the traditional vortex glass theory, we have examined the magnetoresistivity data of iron-based superconductors using our extended thermal activation model: $\rho(B,T)=\rho((T-T_g(B))/(T_c(0)-T_g(B)))^{v(z-1)}$. We predict that the magnetic field-dependent area S + $S_0$ which integrates $\rho$ with T is proportional to $B^{\beta}$, where ${\beta}$ is the vortex glass transition exponent. From our calculation, the vortex glass transition exponent is 0.33, close to the exponent of area $S_0$ + S is 0.31 in $SmO_{0.9}F_{0.1}FeAs$; the exponent of area S is 0.63, which is close to the irreversibility line exponent 2/3. Both of the results show the validity of our model. In addition, our model is shown to be effective in describing irreversibility behavior in layered superconductors.

Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure

  • Amichai Mitelman;Gili Lifshitz Sherzer
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.307-314
    • /
    • 2023
  • In this paper we back-analyze a failure event of a 9 m high concrete cantilever wall subjected to earth loading. Granular soil was deposited into the space between the wall and a nearby rock slope. The wall segments were not designed to carry lateral earth loading and collapsed due to excessive bending. As many geotechnical programs rely on the Mohr-Coulomb (MC) criterion for elastoplastic analysis, it is useful to apply this failure criterion to the concrete material. Accordingly, the back-analysis is aimed to search for the suitable MC parameters of the concrete. For this study, we propose a methodology for accelerating the back-analysis task by automating the numerical modeling procedure and applying a machine-learning (ML) analysis on FE model results. Through this analysis it is found that the residual cohesion and friction angle have a highly significant impact on model results. Compared to traditional back-analysis studies where good agreement between model and reality are deemed successful based on a limited number of models, the current ML analysis demonstrate that a range of possible combinations of parameters can yield similar results. The proposed methodology can be modified for similar calibration and back-analysis tasks.

커스텀 파서와 SMT 솔버를 활용한 모델 기반 테스트 데이터 생성 기법 (Model-Based Automatic Test Data Generation Method Using Custom Parser and SMT Solver)

  • 신기욱;임동진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권8호
    • /
    • pp.385-390
    • /
    • 2017
  • 지속적으로 증가하는 소프트웨어 복잡성으로 인해, 모델 기반 개발 기법은 소프트웨어 개발에 있어 거의 필수적인 기법이 되고 있다. 그러나, 모델 기반 기법을 활용한다 하더라도 복잡한 소프트웨어를 위한 테스트 케이스 생성은 여전히 풀어야 할 숙제이다. 본 논문에서는, 커스텀 파서와 SMT 솔버를 이용해 UML 모델 기반에서 자동 테스트 데이터를 생성하는 기법을 제안한다. 제안된 기법을 이용하면, 모델이 액션 언어(action language)와 같은 플랫폼 독립적인 언어로 구현되어 있거나, 플랫폼 종속적인 언어로 기술되어 있더라도 테스트 입력을 생성할 수 있다. 또한, 모델에서 테스트 케이스를 효율적으로 생성하기 위해 콘콜릭 수행 기법을 적용하였다. 본 논문에서는, 제안된 테스트 데이터 생성 기법을 통해 현대 산타페의 파워윈도우 스위치 모델에 활용된 사례를 기술한다.