• Title/Summary/Keyword: FDTD numerical method

Search Result 82, Processing Time 0.019 seconds

Numerical Dispersive Characteristics and Stability Condition of the Multi-Resolution Time Domain(MRTD) Method (다해상도 시간영역법의 수치적 분산특성과 안정조건)

  • 홍익표;유태훈;윤영중;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 1996
  • The numerical dispersive characteristics and the numerical stability confition of the Multi-Resolution Time-Domain(MRTD) method are calculated. A dispersion analysis of the MRTD schemes including a comparison to Yee's Finite-Difference Time-Domain(FDTD) method is given. The superiority of the MRTD method to the spatial discretization is shown. The required computational memory can be reduced by using the MRTD method. We expect that the MRTD method will be very useful method for numerical modelling of electromagnetics.

  • PDF

Approximate Numerical Reflection Coefficient of Isotropic-Dispersion Finite-Difference Time-Domain(ID-FDTD) Scheme at the Planar Dielectric Interface for the TM Wave

  • Deng, Pingping;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.2
    • /
    • pp.45-49
    • /
    • 2010
  • This paper presents an analytical formulation of the numerical reflection coefficient of the ID-FDTD scheme at the planar dielectric boundary for a TM wave incidence. The reflection coefficient is formulated in an approximate manner, and the accuracy of this method is numerically verified. The effective dielectric constant for a grid on the interface is obtained, and then reduced to that of the Yee scheme for a small cell size.

Developing a simulator for Super-RENS/ROM disk using finite difference time domain method (Super-ROM/RENS 디스크 구조의 재생신호 해석을 위한 유한차분 시간구역 (FDTD) 방법을 이용한 시뮬레이터 개발)

  • Ahn Duck-Won;You Chun-Yeol
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.32-37
    • /
    • 2005
  • We developed a numerical simulator in order to study the Super-RENS/ROM (Super REsolution Near-Field Structure, Read Only Memory) using 3-dimensional FDTD (finite difference time domain) method. The simulation can be performed by three steps. In the first step, we utilized the vector-diffraction theory to calculate the characteristics of incident laser beam from the object-lens to the surface of the disk. At the second step, we fed the calculated result as an input for the main FDTD simulations on the optical layers in the disk structure. After performed the FDTD simulations, we took near-to-far field transformation for the reflected signal, from the surface of the disk to the detector. Finally, we can get reflected signal at the photo-diode. Using this developed simulator, we were able to study about the reading signal from various disk structures as a function of a laser beam position. We calculated reading signals for various pit sizes for Super-ROM structure, and it is found that the simple optical diffraction theory can not explain the reading mechanism of Super-ROM, and more complicated temperature dependent physics must be involved.

  • PDF

Developing a simulator for Super-RENS/ROM disk using finite difference time domain method (Super-ROM/RENS 디스크 구조의 재생신호 해석을 위한 유한차분시간구역 (FDTD) 방법을 이용한 시뮬레이터 개발)

  • Ahn, Duck-Won;You, Chun-Yeol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • We developed a numerical simulator in order to study the Super-RENS/ROM (Super REsolution Near-Field Structure, Read Only Memory) using 3-dimensional FDTD (finite difference time domain) method. The simulation can be performed by three steps. In the first step, we utilized the vector-diffraction theory to calculate the characteristics of incident laser beam from the object-lens to the surface of the disk. At the second step, we fed the calculated result as an input for the main FDTD simulations on the optical layers in the disk structure. After performed the FDTD simulations, we took near-to-far field transformation for the reflected signal, from the surface of the disk to the detector. Finally, we can get reflected signal at the photo-diode. Using this developed simulator, we were able to study about the reading signal from various disk structures as a function of a laser beam position. We calculated reading signals for various pit sizes for Super-ROM structure, and it is found that the simple optical diffraction theory can not explain the reading mechanism of Super-ROM, and more complicated temperature dependent physics must be involved.

  • PDF

An Analysis of the Unequal Wilkinson Power Divider Using the Finite-Difference Time-Domain (FDTD) Method (시간 영역 유한 차분법(FDTD)을 이용한 비등분 Wilkinson 전력 분배기의 해석)

  • 김광조;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.715-724
    • /
    • 1998
  • The FDTD(Finite-Difference Time-Domain) method is applied to analyze an unequal Wilkinson power divider. Unequal Wilkinson power divider has complex structures and the standard Yee Cell modeling method is not appropriate. In this paper, nonuniform gridding and subcell modeling are used to accurately analyze the characteristics of an unequal Wilkinson power divider. For comparison, the numerical results are presented with those from a commercial circuit simulator.

  • PDF

Design and Analysis of an Impedance-Tuned Monopole Microstrip Patch Antenna using the Finite Difference Time Domain Method (유한 차분 시간 영역 해석법을 이용한 임피던스 정합 모노폴 마이크로스트립 안테나 설계 및 해석)

  • Jung, Young-Ho;Lee, Dong-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.28-33
    • /
    • 2002
  • In this paper, the impedance-tuned monopole microstrip antenna designed for PCS is analyzed using finite difference time domain(FDTD) method. The perfectly matched layer(PML) absorbing material condition proposed by Berenger is used for the truncation of finite difference time domain lattice. A Gaussian pulse is selected as an excitation signal and a resistive voltage source model is used to reduce the error caused by the reflection waves. The FDTD method is inherently a near field technique. Therefore, the near field to far field transformation is need to compute far field antenna parameters such as radiation patterns and gain. The near field to far field transformation can be done both in the time domain and the frequency domain. We use the frequency domain transformation to compute the far field radiation patterns at single frequency. All the numerical results obtained by the FDTD method are compared with simulation results using the HFSS software. Good agreements are obtained in all cases.

Analysis on the Planar Bowtie Antenna for IMT-2000 Handset (IMT-2000 핸드셋용 평면형 Bowtie 안테나 해석)

  • Lee, Hee-Suk;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.681-688
    • /
    • 2000
  • In this paper, a planar antenna that is small and light, is designed and analyzed aiming handset antenna of IMT-2000. Employing the Ensemble simulator based on a MoM, design-parameters are found to determine a resonant frequency. Therefore, it is analyzed with the Ensemble simulation and FDTD numerical for resonating at the allocated frequency for IMT-2000 in the fixed antenna dimension of 21$^{\circ}$wing angle that is a design parameter. Analyzing with FDTD method, Though the results of FDTD are very exact, this analysis introduces errors due to the staircasing approximation in the slope of bowtie. To reduce this error, it is divided to 4-ranges where the cell contains the boundary of perfect conductor/free space. Then, each range is calculated by different by different equation, which modify the H-field to add the component of the area and length of the cell filled with free space. Therefore, the modified FDTD algorithm provided with a narrow bandwidth of return loss calculated with a standard FDTD algorithm that can be extended to the desired ranges.

  • PDF

Analysis of Mutual Coupling between Antennas on Small UAV (소형 무인항공기에 이용되는 안테나간의 상호결합 해석)

  • 김현경;김태식;이해창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.407-415
    • /
    • 2002
  • In this paper, mutual coupling effect between antennas mounted on UAV(Unmanned Air Vehicle), operating In different frequency bands, is calculated for supposing efficient arrangement. For the calculation, FDTD method is used, simulation parameters are confined to distance between antennas, height of antennas, types of ground, etc. The simulation data are compared with those of other numerical method to confirm accuracy of the results. It is appeared that the critical factor of mutual coupling is height of an antenna relative to that of the other antenna.

Wide-Band T-Shaped Microstrip-Fed Twin-Slot Array Antenna

  • Jang, Yong-Woong
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • A numerical simulation and an experimental implementation of T-shaped microstrip-fed printed slot array antenna are presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the finite-difference time-domain (FDTD) method. The dependence of design parameters on the bandwidth characteristics is investigated. The measured bandwidth of twin-slot array antenna is from 1.37 GHz to 2.388 GHz, which is approximately 53.9 % for return loss less than or equal to -10 dB. The bandwidth of twin-slot is about 1.06 % larger than that of single-slot antenna. The measured results are in good agreement with the FDTD results.

  • PDF

Capacitive Equivalent Circuit Modeling for Coplanar Waveguide Discontinuities (코플래너 웨이브가이드 불연속에 대한 용량성 등가회로 모델링)

  • 박기동;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.486-487
    • /
    • 1997
  • This paper presents the pure capacitive lumped element equivalent circuits for several coplanar waveguide(CPW) discontinuities such as an open-end, an open-end with connected ground planes, a gap and an open-end CPW stub and gives their capacitive element values as a function of physical dimensions of the discontinuity and the frequency for a specific substrate. The capacitive element values are determined from the scattering parameters which are obtained using the finite-difference time-domain(FDTD) method. For an open-end, an open-end with connected ground planes and a gap, the numerical results of the FDTD are compared with the quasi-static results which are calculated using the three- dimensional finite difference method(3D-FDM).

  • PDF