• 제목/요약/키워드: FDTD Simulation

검색결과 130건 처리시간 0.024초

3.0 T MRI를 위한 병렬전송 고주파 코일 구조 비교와 최적화 (Comparison and Optimization of Parallel-Transmission RF Coil Elements for 3.0 T Body MRI)

  • 오창현;이흥규;류연철;현정호;최혁진
    • 전자공학회논문지SC
    • /
    • 제44권4호통권316호
    • /
    • pp.55-60
    • /
    • 2007
  • 3.0 T 이상의 고자장 MRI의 경우 특히 body 영상에서는 전자기파의 특성상 피촬영체 내부의 자장 불균일도가 매우 심하여 부분적으로 SAR(Specific Absorption Ratio)가 인체 허용치 이상으로 높아지는 경우가 있다. 본 연구에서는 3.0 T Body MRI에서 이와 같은 문제점을 극복하기 위한 병렬전송 고주파 코일 (parallel-transmission radio frequency coil)의 element 구조와 동작 방법을 최적화하고 FDTD 시뮬레이션을 통하여 유용성을 검증토록 하였다. 이를 위해 3가지 형태의 전송 고주파 코일 element에 대하여 여러 가지 parameter를 실험 및 시뮬레이션을 통해 비교하였으며 각각의 element에 독립적으로 공급되는 고주파 펄스는 코일 내부의 피촬영체에 적절한 자장의 크기와 초소의 SAR를 가지면서 자장의 균일도를 향상시키는 방향으로 최적화하였다. 예로 3.0 T Body MRI에서 $25cm{\times}8cm$ 코일 요소를 12 채널로 구성하는 방식의 경우 최적화 이전에는 70% 이상의 자장의 불균일도를 보인 반면 최적화 후에는 26% 이하로 개선시킬 수 있었다. 따라서 본 연구에선 제안된 코일구조는 (초)고자장 MRI에도 유용하게 적용될 것으로 판단된다.

금속-유기 구조체를 이용한 포토닉 크리스탈 기반의 효율적인 습도 컬러 센서 (Efficient Humidity Color Sensor Based on a Photonic Crystal with a Metal-Organic Framework)

  • 김준용;이성학;도윤선
    • 한국광학회지
    • /
    • 제29권6호
    • /
    • pp.268-274
    • /
    • 2018
  • 본 연구에서는 1차원 포토닉 크리스탈과 금속-유기 구조체 (MOF) 물질인 Hong Kong University of Science and Technology(HKUST-1)을 이용한 수분 감지 컬러 센서를 제안한다. 1차원 포토닉 크리스탈은 주기적인 굴절률 변화에 의해 포토닉 밴드갭이 존재하고, 특정한 파장 대역의 광 성분을 차단 및 반사한다. HKUST-1의 굴절률은 건조한 환경과 습한 환경에서 그 값이 서로 다르다. 여기서 우리는 포토닉 밴드갭의 유무를 활용하여 FDTD 시뮬레이션으로 센서를 설계하였다. 광학 해석 결과, 투과된 광의 색 변환보다 반사된 광의 색 변환이 우수하여 반사된 광을 이용하였다. 그리고 포토닉 밴드갭의 중심 파장이 550 nm인 경우, 건조한 환경 대비 습한 환경의 최대 피크 값이 약 9.5배로 증가했으며, 무채색에서 녹색으로 색 변환이 가능하여 센서로의 특성이 우수하였다. 본 연구 결과는 MOF 물질의 수분 감지 컬러 센서로의 활용을 제시하였으며, MOF 물질의 나노 구조 설계로 산업 디바이스로의 활용성도 확대할 것이다.

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

각막실질 콜라겐섬유의 배열구조에 따른 광투과율 분석 (Analysis of Light Transmittance according to the Array Structure of Collagen Fibers Constituting the Corneal Stroma)

  • 이명희;김영철
    • 대한시과학회지
    • /
    • 제20권4호
    • /
    • pp.561-568
    • /
    • 2018
  • 목적 : 각막실질 내 다발 구조로 이루어진 콜라겐섬유의 크기와 규칙적인 배열은 투명성과 매우 밀접한 상관성을 가지고 있다. 시뮬레이션을 이용하여 배열구조 및 콜라겐섬유층 두께에 따른 광투과율의 변화를 확인하고자 하였다. 방법 : 시뮬레이션 소프트웨어인 OptiFDTD로 각막실질 내 콜라겐섬유를 정육각형, 육각형, 사각형 및 자유형으로 각각 배열하였고 이에 따른 광투과율을 분석하였다. 사각형 배열에 대하여 시뮬레이션 공간상에 있는 콜라겐섬유의 개수가 동일할 때 밀도변화에 따른 광투과율을 확인하고 콜라겐섬유의 개수와 밀도가 변화할 때 광투과율을 조사하였다. 결과 : 콜라겐섬유의 개수가 동일할 때 사각형, 정육각형, 자유형 및 육각형의 배열구조 순서로 밀도가 작아지고, 섬유층의 두께가 두꺼워진다. 배열구조를 변화시켜 광투과율을 측정한 결과 동일한 위치의 검출기에서 측정된 광투과율은 배열구조에 관계없이 거의 유사하였다. 검출기 D0, D1, D2 및 D3에서 각각 사각형, 육각형과 사각형, 정육각형 및 정육각형 배열구조에서 최대투과율로 나타났으며, 육각형, 자유형, 육각형과 사각형 및 사각형 배열구조에서 최소 투과율로 나타났다. 하지만, 최대 투과율과 최소 투과율의 차이는 1% 이내로 거의 유사하였다. 콜라겐섬유의 개수가 동일할 때 사각형 배열구조에서 밀도변화에 따른 광투과율은 섬유층 두께가 증가할수록 광투과율은 감소하였다. 또한, 두께가 증가하면서 콜라겐섬유의 개수가 감소하였을 때 광투과율이 더 많이 감소하였다. 결론 : 콜라겐 배열구조가 변화하여도 광투과율은 배열구조와 관계없이 거의 유사하게 나타났다. 하지만, 배열구조의 변화에 따라 콜라겐섬유층의 두께가 변화하였고, 두께가 증가할수록 광투과율이 감소하였다. 즉, 광투과율은 배열구조보다는 콜라겐섬유층의 두께와 더 밀접한 관계를 가지고 있음을 확인하였다.

이동통신 주파수 대역에서의 동물 실험용 국부 노출 장치 개발 (Development of Local-Exposure Systems for In Vivo Studies at Mobile-Phone Frequency Bands)

  • 고채옥;박민영;도현정;김정란;정기범;백정기
    • 한국전자파학회논문지
    • /
    • 제17권5호
    • /
    • pp.451-460
    • /
    • 2006
  • 본 논문에서는 이동통신 주파수 대역인 PCS와 셀룰러 대역(PCS: 1,762.5 MHz, 셀룰러: 848.5 MHz)에서 전자파의 인체 영향 규명을 위해 동물 실험용 국부 노출 장치를 설계, 제작하였다. 제작된 노출 장치는 카루셀 형의 마우스용 국부 노출 장치로서 40마리의 마우스를 동시에 노출시킬 수 있으며, 피 실험체인 마우스에 스트레스가 없도록 조명, 환기, 소음 등 환경 조건을 적절히 고려하여 제작되었다. 노출 장치의 노출량 측정을 위해 온도 프로브를 이용한 SAR측정을 수행하였다. 마우스 카데바와 고체 팬텀의 머리 부분 내부의 3점에 대해 측정하였으며, 실제로 장기간의 노출에 이용되는 조건에서 시뮬레이션 결과와 잘 일치함을 확인하였다. 현재 제작된 노출 장치는 실제 마우스의 장기 노출 실험에 사용되고 있다.

Design of Crisscrossed Double-Layer Birdcage Coil for Improving B1+ Field Homogeneity for Small-Animal Magnetic Resonance Imaging at 300 MHz

  • Seo, Jeung-Hoon;Han, Sang-Doc;Kim, Kyoung-Nam
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.308-311
    • /
    • 2015
  • We design a crisscrossed double-layer birdcage (DLBC) coil by modifying the coil geometry of a standard single-layer BC (SLBC) coil to enhance the homogeneity of transmitting magnetic flux density ($B_1{^+}$) along the main magnetic field ($B_0$)-direction for small-animal magnetic resonance imaging (MRI) at 300 MHz. The performance assessment of the crisscrossed DLBC coil is conducted by computational analysis with the finite-difference time domain method (FDTD) and compared with SLBC coil in terms of the $B_1$ and the $B_1{^+}$ distribution. As per the computational calculation studies, the mean value in the two-dimensional $B_1{^+}$ map obtained at the mid-axial slice with the proposed DLBC coil is slightly lower than that obtained with the SLBC coil, but the $B_1{^+}$ value of the DLBC coil in the outermost plane (40 mm away from the central plane) shows improvements of 19.3% and 24.8% over the SLBC coil $B_1{^+}$ value when simulating a spherical phantom and realistic mouse body modeling. These simulation results indicate that, the $B_1{^+}$ homogeneity along the z-direction was improved by using DLBC configuration. Our approach enables $B_1{^+}$ homogeneity improvement along the zdirection, and it can also be applied to ultra-high field (UHF) MRI systems.

不規則 粗面에서 저입사각 후방산란에 관한 수치해석 (A Numerical Study of Low Grazing Angle Backscattering from Random Rough Surfaces)

  • Kwang-Yeol Yoon
    • 한국전자파학회논문지
    • /
    • 제13권6호
    • /
    • pp.590-598
    • /
    • 2002
  • 맥스웰방정식의 직접해인 FVTD(Finite Volume Time Domain)법을 이용하여, 저입사시의 불규칙 조면에서의 전자파 산란 문제를 수치해석 하였다. FVTD댑은 복잡한 구조의 전자파의 산란문제에 대해서 개발된 시간영역에 의한 수치해석법이며, 종래의 FDTD(Finite Difference Time Domain)법 보다 임의형태의 경계문제를 쉽게 다룰 수 있는 이점을 가지고 있다. 그러나 산란물체의 형태가 아주 복잡하고 정도를 문제삼을 경우 FVTD법에서는 셀 사이즈(cell size)를 충분히 세분화 할 필요가 있다. 그 경우 셀 사이즈에 의한 수치해의 수속성을 검토하고, 외삽법(extrapolation method)을 이용해서 간단하고 정확한 후방산란계수를 측정하는 방안을 제시했다. 더욱이 취급하는 편파의 상이를 특징짖는 레이다 단면적의 편파비에 대해서 입사각(grazing angle) 이 10도 이하의 해면 레이다의 실험결과와 비교하여, FVTD법의 수치계산 결과가 실측치와 잘 일치하는 결과를 제시했다.

그래픽 프로세서를 이용한 탄성파 수치모사의 계산속도 향상 (Acceleration of computation speed for elastic wave simulation using a Graphic Processing Unit)

  • Nakata, Norimitsu;Tsuji, Takeshi;Matsuoka, Toshifumi
    • 지구물리와물리탐사
    • /
    • 제14권1호
    • /
    • pp.98-104
    • /
    • 2011
  • 탐사 지구물리학에서 수치 모사는 지하매질에서의 탄성파 전파 현상을 이해하는데 중요한 통찰력을 제공한다. 탄성파 모사는 음향파 근사에 의한 수치 모사보다 계산시간이 많이 소요되지만 전단응력 성분을 포함하여 보다 현실적인 파동의 모사를 가능하게 한다. 그러므로 탄성파 모사는 탄성체의 반응을 탐사하는데 적합하다고 할 수 있다. 계산 시간이 길다는 단점을 극복하기 위해 본 논문에서는 그래픽 프로세서(GPU)를 이용하여 탄성파 수치 모사 시간을 단축하고자 하였다. GPU는 많은 수의 프로세서와 광대역 메모리를 갖고 있기 때문에 병렬화된 계산 아카텍쳐에서 사용할 수 있는 장점이 있다. 본 연구에서 사용한 GPU 하드웨어는 NVIDIA Tesla C1060으로 240개의 프로세서로 구성되어 있으며 102 GB/s의 메모리 대역폭을 갖고 있다. NVIDIA에서 개발된 병렬계산 아카텍쳐인 CUDA를 사용할 수 있음에도 불구하고 계산효율을 상당히 향상시키기 위해서는 GPU 장치의 여러 가지 다양한 메모리의 사용과 계산 순서를 최적화해야만 한다. 본 연구에서는 GPU 시스템에서 시간영역 유한차분법을 이용하여 2차원과 3차원 탄성과 전파를 수치 모사하였다. 파동전파 모사에 가장 널리 사용되는 유한차분법 중의 하나인 엇갈린 격자기법을 채택하였다. 엇갈린 격자법은 지구물리학 분야에서 수치 모델링을 위해 사용하기에 충분한 정확도를 갖고 있는 것으로 알려져 있다. 본 논문에서 제안한 모델링기법은 자료 접근 시간을 단축하기 위해 GPU 장치를 메모리 사용을 최적화하여 가능한 더 빠른 메모리를 사용한다. 이점이 GPU를 이용한 계산의 핵심 요소이다. 하나의 GPU 장치를 사용하고 메모리 사용을 최적화함으로써 단일 CPU를 이용할 경우보다 2차원 모사에서는 14배 이상, 3차원에서는 6배 이상 계산시간을 단축할 수 있었다. 세 개의 GPU를 사용한 경우에는 3차원 모사에서 계산효율을 10배 향상시킬 수 있었다.

광 결합 및 집속도 향상을 위한 금속 슬릿 프레넬 렌즈의 설계 (Design of Metal-Slit Fresnel Lens for Enhanced Coupling Efficiency)

  • 박동원;정영진;구석모;유선규;박남규;전영민;이석
    • 한국광학회지
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2009
  • 최근 광 격자구조나(photonic crystal) 표면 플라즈몬파(surface plasmon) 혹은 실리콘을 이용한 나노(nano) 스케일의 광 회로 시스템에 대한 연구가 활발한데, 이는 이미 한계에 다다른 전자회로속도의 한계를 극복하고 지금보다도 훨씬 작은 회로를 구성할 수 있는 이점이 있기 때문이다. 현재까지 보고된 바 있는 광 결합 시스템들은 그 크기가 나노 스케일의 광 회로 시스템에 비해 커서 광 결합 시스템으로서의 의미가 퇴색되고 있는데 본 논문에서는 매우 짧은 초점 거리를 가지며 매우 얇은 구조를 가지는 프레넬 렌즈를 이용한 광 결합 시스템을 제안하여 광 결합 시스템을 나노 스케일 광 회로 시스템과 비교할 수 있을 정도로 소형화 하는 방법을 모색하였다. 본 논문에서는 금 슬릿을 채용한 프레넬 렌즈를 제안하여 설계하고 그 구조를 이용해 2차원 전산모사를 수행하였다. 그 결과, 일반 프레넬 렌즈의 광 결합 효율이 약 43%인데 반해, 금 슬릿을 채용한 프레넬 렌즈의 광 결합 효율은 가장 효율적인 구조로 설계하였을 경우에 최대 약 65%의 광 결합 효율을 보인다. 일반 프레넬 렌즈에 비해 50% 이상의 광 결합 효율의 향상을 달성하였다.

지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석 (The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis)

  • 이상연;송기일;류희환;강경남
    • 한국지반환경공학회 논문집
    • /
    • 제23권8호
    • /
    • pp.29-36
    • /
    • 2022
  • 최근 지하공간에 대한 개발이 활발히 진행됨에 따라 지중 시설물의 정보에 대한 중요도가 증가하고 있다. 굴착작업을 수행하기 전에 지중 시설물의 위치를 정확히 파악해야 한다. 지표투과레이더(GPR)와 같은 지구물리적 탐사 방법은 지중 시설물을 조사하는데 유용하게 사용된다. GPR은 지반에 전자기파를 송출하며 지반과 다른 매질에 의해 반사되는 신호를 분석하여 지중시설물의 위치와 깊이 등을 파악한다. 그러나 GPR 데이터의 판독은 숙련된 전문가의 주관적 판단에 의존하기 때문에 이를 딥러닝을 통해 자동화하려는 많은 연구가 진행되고 있다. 딥러닝은 학습 데이터가 많을수록 정확한 모델을 만들 수 있으며, 이러한 학습데이터 축적에 있어 수치해석이 좋은 대안이 될 수 있다. 수치해석의 경우 지반의 불균질성을 모사하여 다양한 조건에서의 GPR 탐사 데이터를 생성할 수 있으며, 이를 이용하여 학습모델의 성능을 향상시킬 수 있을 것으로 생각된다. 지반은 불균질하며, GPR 신호는 지반의 다양한 변수로 인해 영향을 받는다. 그러나 이러한 불균질 지반에 대한 연구가 필요한 실정이다. 따라서 본 연구에서는 프랙탈 차원수와 지반의 함수비 범위에 따른 GPR탐사 신호특성을 분석하고 불균질한 지반을 모사하기 위한 입력파라미터에 대한 연구를 수행하였다. 프랙탈 차원수가 2.0을 넘어가면 적합곡선에 대한 오차가 크게 감소하는 것으로나타났다. 그리고 분석의 타당성을 확보하기 위해 함수율의 범위가 0.14 미만이어야 한다.