• 제목/요약/키워드: FDS modeling

검색결과 46건 처리시간 0.026초

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling (화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰)

  • Yang, Ho-Dong;Han, Ho-Sik;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • 제30권5호
    • /
    • pp.116-123
    • /
    • 2016
  • The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

Primary Fire Behavior of Compounded Multiplex Theater with Various Fire Conditions (조합형 복합상영관에서의 화재조건에 따른 초기화재 거동해석)

  • Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2007
  • This paper investigated the fire and smoke behavior in the compounded multiplex theater using FDS with various spacial and boundary conditions to ensure the fire safety of the multiplex. The results showed that more rapid temperature increase and smoke can be induced near the exit door for the lower fire load duo to the horizontal smoke movement. The overuse of fire resistants can generate more smoke while delaying combustion rate, which can give adverse effect to the evacuation. The mal-function of the exhaust fan would obstruct smoke exhaust but also retard the function of sprinkler head.

A Numerical Modeling of Smoke Behavior and Detection in a Pressurized Module(PM) of the International Space Station(ISS) (국제우주정거장의 가압모듈에서 연기거동 및 감지에 관한 수치 모델링)

  • Park, Seul-Hyun;Lee, Joo-Hee;Kim, Youn-Kyu;Hwang, Cheol-Hong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 한국화재소방학회 2011년도 추계학술논문발표회 논문집
    • /
    • pp.7-10
    • /
    • 2011
  • 최근 국제우주정거장에서 화재안전에 관한 중요성의 인식으로 화재의 감지/소화의 메커니즘을 구체적으로 이해하기 위한 다양한 연구들이 시도되고 있다. 본 연구에서는 국제우주정거장에서 각종 실험과 연구를 진행하는 가압모듈을 대상으로 환기, 연기거동 및 감지에 관한 수치모델링을 수행하였다. 수치모델링은 NIST에서 개발된 FDS (Fire Dynamic Simulator)가 사용되었다. 국제우주정거장 내부는 마이크로중력환경으로 부력이 존재하지 않아 화재 발생 시 화염 및 연기거동은 지상에서의 현상들과 큰 차이를 보이게 된다. 따라서 현재 가압모듈에서 적용되고 있는 환기조건의 변화에 따른 연기거동 및 감지특성에 대한 연구는 향후 국내의 국제 우주정거장 실험 참여를 위한 기초적인 정보를 제공할 것으로 기대된다.

  • PDF

Analysis of Fire Intensity According to the Zones Classification in Traditional Market Stores (전통재래시장 상가간의 구역 구분에 따른 화재강도 분석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권6호
    • /
    • pp.154-160
    • /
    • 2020
  • This study analyzed the fire intensity according to the zones classification between traditional market stores using FDS software. Modeling was conducted for the Seomoon traditional market district 4 at Daegu, which places combustibles, such as textiles and clothing near the passageway. The first ignition point assumed a short circuit fire situation at the fourth store combustible. The analysis was conducted under similar conditions as the fire situation in 2016. When there was no section wall, the fire spread rapidly through radiation in all directions from the fire-origin point. After 600 seconds, the mall was burnt to the ground. When section walls were present, however, the fire could be restricted inside the compartment. The first intensity of the two analysis conditions was predicted from the total heat energy from 200 seconds (X1) to 600 seconds (X2), where the heat generation rate began to increase rapidly. As a result of installing section walls near the fire point, heat energy generation of approximately 11.12 MW (55.68 %) was delayed. Further analysis of smoke control, according to the section wall arrangement and re-installation facilities, will be needed to study the characteristics of fire in traditional markets comprehensively.

A Study on Concurrent Fire Appearance through Openings (개구부를 통한 동시다발적인 화재성상에 관한 연구)

  • Min, Se-Hong;Lee, Jae-Moon
    • Fire Science and Engineering
    • /
    • 제26권2호
    • /
    • pp.90-96
    • /
    • 2012
  • Since vertical flame spread speed on exterior materials is much faster than horizontal fire, analysis of its fire characteristic is required. For the study of vertical fire pattern created by penetrating windows or openings from the exterior wall of buildings, the research is based on the fire simulation for an aluminum-complex-panel with which is commonly used as exterior materials and consists of polyethylene core material. As a result, the flame reaches the 2nd floor after 135 seconds in the early stage of fire, the 10the floor after 470 seconds and the 30th floor, the highest floor, after 711 seconds. The result shows that fire spread abruptly expands on upper floor due to stack effect of a turbulent flow or exterior materials. In consequence, we can confirm a serious problem that a conflagration of a building through an opening that is equipped with the exterior-materials spreads into interior of building at that same time.

Parametric study of porous media as substitutes for flow-diverter stent

  • Ohta, Makoto;Anzai, Hitomi;Miura, Yukihisa;Nakayama, Toshio
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권2호
    • /
    • pp.111-125
    • /
    • 2015
  • For engineers, generating a mesh in porous media (PMs) sometimes represents a smaller computational load than generating realistic stent geometries with computer fluid dynamics (CFD). For this reason, PMs have recently become attractive to mimic flow-diverter stents (FDs), which are used to treat intracranial aneurysms. PMs function by introducing a hydraulic resistance using Darcy's law; therefore, the pressure drop may be computed by test sections parallel and perpendicular to the main flow direction. However, in previous studies, the pressure drop parallel to the flow may have depended on the width of the gap between the stent and the wall of the test section. Furthermore, the influence of parameters such as the test section geometry and the distance over which the pressure drops was not clear. Given these problems, computing the pressure drop parallel to the flow becomes extremely difficult. The aim of the present study is to resolve this lack of information for stent modeling using PM and to compute the pressure drop using several methods to estimate the influence of the relevant parameters. To determine the pressure drop as a function of distance, an FD was placed parallel and perpendicular to the flow in test sections with rectangular geometries. The inclined angle method was employed to extrapolate the flow patterns in the parallel direction. A similar approach was applied with a cylindrical geometry to estimate loss due to pipe friction. Additionally, the pressure drops were computed by using CFD. To determine if the balance of pressure drops (parallel vs perpendicular) affects flow patterns, we calculated the flow patterns for an ideal aneurysm using PMs with various ratios of parallel pressure drop to perpendicular pressure drop. The results show that pressure drop in the parallel direction depends on test section. The PM thickness and the ratio of parallel permeability to perpendicular permeability affect the flow pattern in an ideal aneurysm. Based on the permeability ratio and the flow patterns, the pressure drop in the parallel direction can be determined.