• 제목/요약/키워드: FDM 3D printed TPU material

검색결과 4건 처리시간 0.019초

자외선 경화형 디지털 프린팅을 이용한 3D 프린팅 TPU 소재의 색채 특성 (Color Characteristics of 3D-Printed TPU Material Applied with Ultra-Violet Curable Digital Printing Process)

  • 이선희;박소연;정임주;이정순
    • 한국의류학회지
    • /
    • 제45권6호
    • /
    • pp.1052-1062
    • /
    • 2021
  • This study aims to confirm the possibility of Ultra-Violet (UV)-printed 3D printing materials using thermal polyurethane (TPU) with CMYK colors by applying an eco-friendly UV digital printing process. A UV-printed 3D printing TPU material was prepared with cycles of UV printing and CMYK colors. Dyeability of the 3D TPU samples with cycles of UV printing and CMYK were analyzed for thickness, weight, surface roughness, reflectance, colorimetry, and K/S values. The thickness and weight of 3D-printed TPU samples with cycles of UV printing are increased with overprints from 1 to 5. The surface roughness of 3D-printed TPU samples with increasing UV prints were decreased, meaning that the surface of TPU samples becomes gradually smoother. The reflectance spectra of CMYK UV-printed TPU samples showed the surface reflectance within each characteristic wavelength of CMYK. The 3D-printed TPU samples, subjected to UV printing twice or more, showed low surface reflectance. After examining the L*a*b* of the 3D-printed TPU samples by the cycles of UV printing, the study found that the more UV got printed more than 2 times, the closer the color to each CMYK.

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

패션쇼를 위한 3D 프린팅 의상 디자인 개발 연구 (A Study on the Development of 3D printed garments for Fashion Show)

  • 이현승
    • 한국의류산업학회지
    • /
    • 제21권3호
    • /
    • pp.267-276
    • /
    • 2019
  • This study develops 3D-printed-garment collections for a fashion show presentation. A design concept using traditional patterns that consisted of garments regarding the limitation of the printing technology was investigated in order to develop the collection. The structures of the connecting joints of the textile parts which could be easily and sturdily interconnected were invented. Wearability as garments that could be naturally worn on the human body were sought. As a result, four 3D-printed-garments were developed. The 1st garment composed of objects based on a 'Yeon-Dang-Cho'-pattern was constructed as a geometric robe style using a FDM 3D printer and transparent TPU filaments. The 2nd and 3rd 3D-printed-garments composed of an object based on a 'Boe-Sang-Hwa'-pattern was constructed as a distorted one-piece exaggerating the silhouettes of shoulders and waist parts as well as a straight asymmetric tunic style that used the same printer and material as the 1st garment. The last garment composed of an object based on a 'Boe-Sang-Hwa'-pattern printed using a SLA 3D printer and flexible-liquid-resin was constructed attaching the objects on the fabric material by the hot-press machine. The four developed garments were presented in the opening fashion show of 'the 6th International 3D-printing Korea Expo'. This study provides a basic case for related studies to adapt 3D-printing technology in textile pattern development of garment construction.

CT Dicom 파일을 이용하여 제작한 3D Print 손목보호대용 Velcro band 고정위치의 유한요소해석(FEM) (Finite Element Analysis(fem) of The Fixed Position of the Velcro Band for the 3D Print Wrist Brace made using the Dicom File)

  • 최현우;서안나;이종민
    • 한국방사선학회논문지
    • /
    • 제15권5호
    • /
    • pp.585-590
    • /
    • 2021
  • 손목 보조기(Wrist brace)는 손목 외상 환자들에게 사용이 되고 있다. 최근 맞춤형 손목 보조기를 3D 프린팅 기술을 활용하여 제작하는 많은 연구가 진행되고 있다. 이러한 3D 프린팅 맞춤형 보조기는 개인마다 다른 형태 반영, 통기성 확보 등의 다양한 요소를 반영할 수 있는 장점이 있다. 본 논문에서는 3D 프린팅 맞춤형 손목 보조기 제작 시 고려되어야 하는 벨크로 밴드 숫자와 위치가 보조기에 미치는 스트레스를 분석하였다. 맞춤형 보조기를 위해 CT 영상 기반으로 자동설계 소프트웨어(Reconeasy 3D, Seeann Solution)를 사용하여 뼈, 피부 영역 3D 모델링을 수행하였다. 3D 피부 영역을 기반으로, 각 치료 목적에 맞도록 손목 보조기 디자인을 적용하였다. 그리고, 보조기의 탄성을 위해 TPU 소재를 사용하여 FDM 방식 3D 프린터로 손목 보조기를 제작하였다. 맞춤형 3D 프린팅 손목 보조기의 벨크로 밴드의 숫자와 위치에 따른 효용성 평가를 위해 보조기의 스트레스 분포를 유한요소법(FEM)으로 분석하였다. 본 연구에서 수행한 손목 보조기 유한요소 해석을 통해 보조기의 스트레스 분포를 확인하였고 보조기 제작과 벨크로 밴드의 숫자와 위치를 확인할 수 있었다. 이러한 실험 결과는 환자에게 양질의 치료를 제공하는데 도움이 될 것이다.